



## 1. Introduction

### 1.1 Background

Water pollution by heavy metals (HMs) such as Nickel (Ni), Cobalt (Co), and Chromium (Cr) has become a pervasive environmental concern globally [1-3]. These HMs, originating from diverse anthropogenic activities including mining, electroplating, textile manufacturing, and chemical industries, are highly toxic, non-biodegradable, and tend to accumulate in living organisms [4]. Their presence in water bodies threatens aquatic ecosystems, contaminates drinking water sources, and poses severe health risks to humans, such as carcinogenicity, organ damage, and neurological disorders [5,6]. Addressing the contamination caused by HMs is therefore critical to protecting both environmental and public health [7-9].

Traditional methods for HMs removal, including chemical precipitation, ion exchange, membrane filtration, and reverse osmosis, have been widely applied (Figure 1). However, these approaches often suffer from limitations such as high operational costs, production of secondary sludge, incomplete removal, and lack of selectivity toward specific metals [10,11]. Additionally, many conventional technologies require sophisticated infrastructure and intensive energy inputs, making them less feasible for large-scale or resource-constrained settings [12,13]. Consequently, there is an urgent need for cost-effective, sustainable, and environmentally benign remediation technologies capable of efficiently removing HMs from wastewater [14-17].



**Figure 1.** Schematic representation of key technologies employed for HMs removal from wastewater.

Biosorption, defined as the use of biological materials to adsorb and concentrate HMs from water, has gained attention as a sustainable and eco-friendly alternative. Biomass-derived biosorbents such as fruit peels, plant residues, and aquatic weeds are abundant, renewable, and biodegradable, containing functional groups (carboxyl (-COOH), hydroxyl (-OH), amino (-NH<sub>2</sub>)) that facilitate metal binding via ion exchange and complexation [18-20]. Their low cost and high adsorption capacity make them especially suitable for wastewater treatment in developing regions [21-23].

Recent advances in biomass modification chemical (acid/base), physical (thermal), and biological (enzymatic) treatments have enhanced surface area, porosity, and active binding sites, improving adsorption efficiency and selectivity [24-29]. Emerging hybrid materials combining biomass with nanostructures like tungsten oxide further enhance heavy metal removal and photocatalytic degradation [30].

While many reviews cover biomass-derived adsorbents for heavy metal removal, this manuscript offers a focused, up-to-date synthesis on nickel, cobalt, and chromium biosorption. It integrates various biomass modification strategies with mechanistic insights and compiles comprehensive tables on adsorption capacities, isotherm and kinetic models, thermodynamics, and regeneration, alongside diagrams linking modifications to mechanisms. Additionally, the review tackles key challenges like scalability, performance in complex multi-metal wastewaters, and the role of emerging tools such as artificial intelligence (AI) and life cycle assessment (LCA). By connecting fundamental science with practical applications, this work fills critical gaps and serves as a valuable resource for advancing sustainable heavy metal remediation.

This review analyzes biosorption mechanisms, evaluates the effects of biomass modification on adsorption performance, and reviews recent applications targeting Ni (II), Co (II), and Cr (VI) removal. We also discuss challenges in scaling up, managing multi-metal contaminated wastewater, and integrating biosorption with microbial remediation. Finally, future research directions, including AI for adsorbent design and LCA for sustainability, are explored to advance biosorption as a viable pathway for heavy metal remediation in water treatment.

### 1.2 Regulatory Standards for HMs in Drinking Water

HMs in water threaten health and ecosystems worldwide [31-38]. The World Health Organization (WHO) sets maximum allowable limits in drinking water to prevent adverse effects, from acute poisoning to chronic diseases such

as cancer and organ damage [38-47]. Table 1 summarizes these guideline values for key metals like Ni, Co, and Cr. For example, Ni is limited to 0.07 mg/L due to skin and respiratory risks [48]; highly toxic hexavalent chromium (Cr VI) is restricted to 0.05 mg/L because of carcinogenicity and organ toxicity [49]. Co limits are less defined but often set around 0.05 mg/L as a precaution [50]. These standards provide benchmarks for biosorption effectiveness, requiring treated effluents to meet safety thresholds [51]. Hence, biosorbent development must focus on achieving regulatory compliance alongside maximizing removal efficiency, especially in regions with industrial pollution and water scarcity [52].

**Table 1.** WHO guidelines for maximum allowable concentrations of selected HMs in drinking water and associated health effects.

| HM            | Chemical Form        | WHO Maximum Limit (mg/L) | Health Effects                                             |
|---------------|----------------------|--------------------------|------------------------------------------------------------|
| Nickle (Ni)   | Ni <sup>2+</sup>     | 0.07                     | Skin allergies, respiratory problems, potential carcinogen |
| Cobalt (Co)   | Co <sup>2+</sup>     | 0.05*                    | Possible carcinogenic effects; limited data                |
| Chromium (Cr) | Cr (VI) (Hexavalent) | 0.05                     | Carcinogenic, respiratory issues, kidney and liver damage  |
| Lead (Pb)     | Pb <sup>2+</sup>     | 0.01                     | Neurotoxicity, especially in children                      |
| Cadmium (Cd)  | Cd <sup>2+</sup>     | 0.003                    | Kidney damage, bone demineralization                       |
| Mercury (Hg)  | Hg <sup>2+</sup>     | 0.006                    | Neurological and kidney damage                             |

Note: \* The guideline value for cobalt is provisional due to limitations in the available toxicological data.

## 2. Methodology

### 2.1 Literature Search and Selection Protocol

A systematic search strategy was implemented to identify, select, and synthesize the relevant scientific literature on the biosorption of Ni (II), Co (II), and Cr (VI) using biomass-derived adsorbents. The methodology was designed to ensure comprehensiveness, reproducibility, and transparency, aligning with best practices for evidence synthesis.

#### 2.1.1 Information Sources and Search Strategy

Electronic searches were conducted in two core citation databases, Scopus and Web of Science (Core Collection), on December 2024. To minimize publication bias and locate additional relevant literature, including preprints and theses, a supplementary search was performed in Google Scholar. The search timeframe was limited to publications from January 2000 to December 2024 to focus on contemporary research while capturing foundational studies.

#### 2.1.2 Eligibility Criteria and Study Selection

Retrieved records from all sources were combined, and duplicates were removed using a reference management software (EndNote, Clarivate Analytics). The subsequent screening involved two sequential stages:

(1) Title/abstract screening. Two independent reviewers screened titles and abstracts against initial inclusion criteria: (a) focus on the aqueous-phase adsorption of Ni (II), Co (II), or Cr (VI); (b) use of a primary adsorbent material derived from biomass or organic waste; (c) presentation of original experimental data.

(2) Full-text assessment. The full texts of potentially eligible studies were retrieved and subjected to a detailed appraisal based on predefined criteria. Studies were excluded if they: (a) utilized exclusively synthetic or inorganic adsorbents (e.g., engineered nanomaterials, zeolites) without a biomass component; (b) lacked essential quantitative performance data (e.g., adsorption capacity, removal percentage, fitted model parameters); (c) were non-primary literature (e.g., review articles, editorials, book chapters); or (d) were not available in English. Conflicts between reviewers were resolved through discussion or consultation with a third author.

#### 2.1.3 Data Extraction and Synthesis

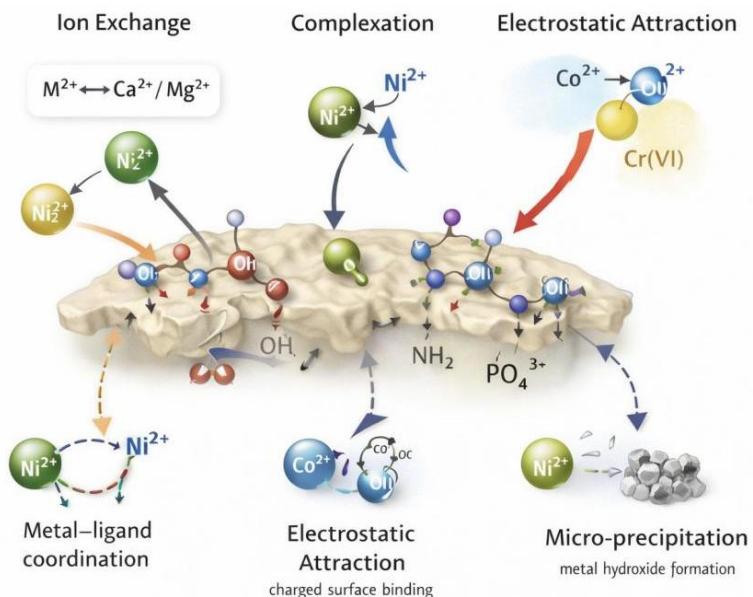
Data from the final set of included studies were extracted into a structured Microsoft Excel® spreadsheet. Extracted variables encompassed: (a) Adsorbent properties: Biomass source, type, and modification method; (b) Experimental conditions: Target metal, initial concentration, solution pH, temperature, adsorbent dose; (c) Mechanistic insights: Dominant adsorption mechanism(s) proposed; (d) Practical considerations: Data on adsorbent regeneration, reusability, and application in real or synthetic multi-metal wastewater. This structured dataset formed the basis for the comparative analysis and narrative synthesis presented in this review.

## 2.2 Screening and Selection Criteria

An initial search identified over 250 articles. After removing duplicates and non-peer-reviewed sources, 225 articles remained for screening. Inclusion criteria were: studies on biosorption of HMs (Ni, Co, Cr) using biomass-derived

materials; investigations on chemical, physical, or biological biomass modifications to enhance adsorption; reports providing quantitative data on adsorption capacity, removal efficiency, isotherms, and kinetics; studies addressing biosorbent regeneration, reusability, and scalability; and English-language full-text articles. Excluded were studies focusing solely on synthetic or inorganic adsorbents, lacking experimental validation or sufficient data, opinion pieces, reviews without original data, and non-English publications. Following screening, 168 articles were selected for full-text review.

### 2.3 Data Extraction and Analysis


Data from selected studies were systematically extracted, covering biomass types and origins, modification methods, target HMs and concentrations, adsorption performance (capacity, efficiency, rates), kinetic and isotherm models, regeneration potential, and experimental setups. Challenges like multi-metal interference and scalability were noted. This information was compiled into tables and figures to highlight trends and identify research gaps and emerging technologies.

### 2.4 Quality Assessment

To ensure the reliability and validity of the findings summarized in this review, each included study underwent a quality appraisal based on: The clarity and reproducibility of experimental methods. Adequacy of controls and replicates. Statistical treatment of data, including error analysis and model fitting quality (e.g.,  $R^2$  values). Relevance and practical applicability of biosorption results, particularly in real wastewater scenarios. Preference was given to studies published in high-impact journals, with recent publications prioritized to reflect current scientific understanding and technological advances.

## 3. Key Technologies Employed for HMs Removal from Wastewater

HMs in wastewater can be treated using physical, chemical, and biological methods, each with distinct advantages and limitations (Figure 2). Chemical precipitation, one of the most common methods, involves adding reagents like lime or sulfides to convert dissolved metals into insoluble forms for removal by sedimentation or filtration [53]. While cost-effective, it generates large volumes of metal-laden sludge requiring careful disposal [54]. Adsorption techniques using materials such as activated carbon, biochar, and nanomaterials offer high removal efficiencies, particularly at low metal concentrations, and allow adsorbent regeneration for improved sustainability [55]. Ion exchange provides selective metal removal via reversible ion substitution but can be hindered by competing ions and requires pretreatment for complex wastewaters [56].



**Figure 2.** Dominant biosorption mechanisms: ion exchange, surface complexation, electrostatic attraction, micro-precipitation, and physical adsorption on biomass-derived adsorbents.

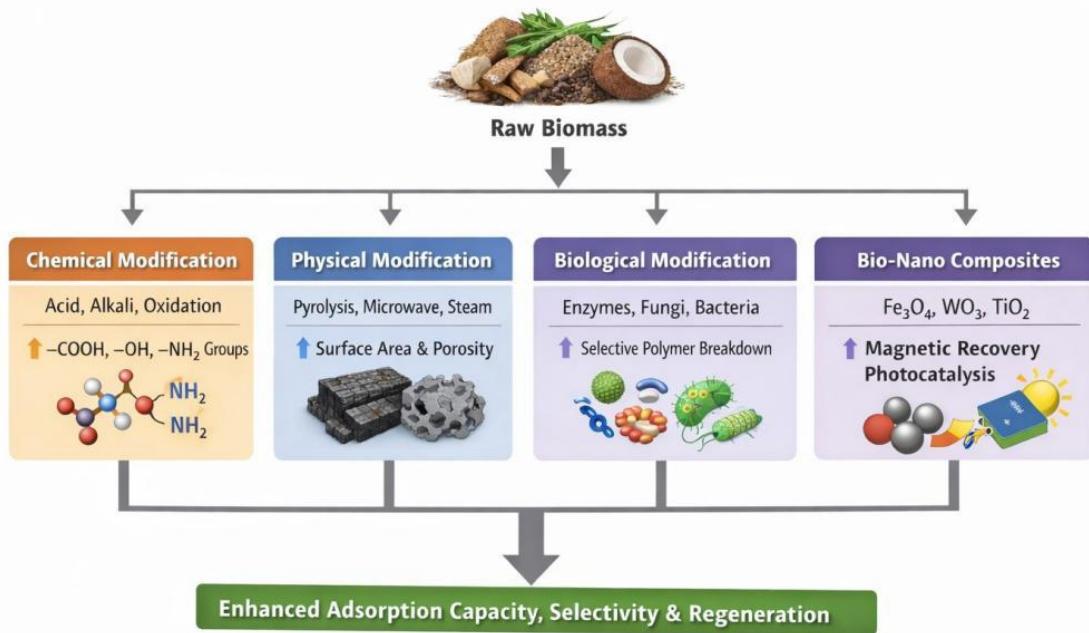
Advanced physical and biological treatments also contribute. Membrane filtration methods like reverse osmosis and nanofiltration effectively separate metals by size and charge but are energy-intensive and prone to fouling [57]. Electrochemical processes, such as electrocoagulation, destabilize metals using electric current, minimizing chemical use but requiring precise control and maintenance [58]. Biological methods, including phytoremediation and microbial bioremediation, use plants and microorganisms to uptake or transform metals, offering eco-friendly options suitable for low to moderate contamination with slower treatment times [59]. Among these, biosorption is a complex process involving multiple physicochemical mechanisms: ion exchange, complexation, electrostatic attraction, microprecipitation,

and physical adsorption that work synergistically to bind metals to biomass surfaces [60]. Functional groups such as -COOH, -OH, -NH<sub>2</sub>, and phosphate (-PO<sub>4</sub><sup>3-</sup>) serve as active sites for metal binding [61].

Ion exchange, often dominant under optimized pH and temperature, replaces native cations on the biosorbent with metal ions, influenced by ionic radius, charge, and hydration energy [62]. Complexation forms stable coordination bonds between metal ions and electron-donating groups, creating strong metal-ligand complexes [63-65]. Electrostatic attraction enhances binding when the biosorbent surface is negatively charged, which depends on solution pH affecting functional group ionization [66-70]. Microprecipitation forms insoluble metal precipitates on or within the biosorbent, improving removal but potentially limiting regeneration [71-75]. Physical adsorption provides reversible, weak initial attachment via van der Waals forces, facilitating subsequent stronger chemical binding [76-77]. The overall biosorption efficiency depends on biomass composition, surface area, porosity, and environmental factors such as pH, temperature, and ionic strength [78-80]. Understanding these mechanisms is essential for tailoring biosorbents through chemical or physical modification to enhance capacity and selectivity [81].

In addition to surface interaction mechanisms, adsorption performance is strongly governed by kinetic behavior, equilibrium modeling, thermodynamic feasibility, and regeneration stability as shown in (Table 2), which collectively determine the practical applicability of biosorbents in wastewater treatment systems [82-85]. Most biomass-derived adsorbents follow pseudo-second-order kinetic models, indicating that chemisorption involving electron sharing or exchange between metal ions and surface functional groups governs the rate-limiting step [86-88]. Equilibrium adsorption data are frequently best described by the Langmuir isotherm model, suggesting monolayer adsorption on homogeneous active sites, whereas Freundlich and Temkin models reflect heterogeneous surface interactions and adsorbate-adsorbent energy distributions under certain operating conditions [89,90].

**Table 2.** Biomass-derived adsorbents, modification methods, adsorption models, thermodynamic behavior, and regeneration performance for heavy metal removal.


| Biomass Source                    | Modification Method                      | Target HM        | Max Capacity (mg/g) | Kinetics Model    | Isotherm Model   | Thermodynamics               | Regeneration (Cycles/% Retention) | Ref. |
|-----------------------------------|------------------------------------------|------------------|---------------------|-------------------|------------------|------------------------------|-----------------------------------|------|
| Lemon peel                        | NaOH treated                             | Ni (II)          | 36.7                | Pseudo-2n d order | Langmuir         | $\Delta G < 0$ , endothermic | 5 cycles/~90%                     | [9]  |
| Sugarcane bagasse                 | H <sub>3</sub> PO <sub>4</sub> + thermal | Cr (VI)          | 98.2                | Pseudo-2n d order | Langmuir, Temkin | $\Delta G < 0, \Delta H > 0$ | 6 cycles/88%                      | [7]  |
| Mango leaf powder                 | Unmodified                               | Cr (VI)          | 99.1                | Pseudo-2n d order | Langmuir         | Spontaneous                  | 4 cycles/82%                      | [23] |
| Mustard biochar                   | Acid activated                           | Co (II)          | 95                  | Pseudo-2n d order | Langmuir         | Endothermic                  | 5 cycles/85%                      | [21] |
| Rice husk biochar                 | Steam activated                          | Pb (II), Cd (II) | 110                 | Pseudo-2n d order | Freundlich       | $\Delta G < 0$               | 7 cycles/90%                      | [27] |
| Polypyrrole/bagasse               | Polymer composite                        | Cr (VI)          | 251                 | Pseudo-2n d order | Langmuir         | Endothermic                  | 5 cycles/87%                      | [2]  |
| Banana peel carbon                | Pyrolysis                                | Co (II)          | 72                  | Pseudo-2n d order | Freundlich       | Spontaneous                  | 4 cycles/80%                      | [25] |
| Biochar-WO <sub>3</sub> composite | Metal oxide doping                       | Cr (VI)          | >100                | Mixed             | Langmuir         | Endothermic                  | Magnetic recovery                 | [36] |

Thermodynamic parameters further explain adsorption behavior, where negative Gibbs free energy ( $\Delta G$ ) values confirm the spontaneous nature of metal uptake, and positive enthalpy ( $\Delta H$ ) values indicate endothermic adsorption in many biosorbent systems, implying improved performance at elevated temperatures [91-93]. Positive entropy ( $\Delta S$ ) values suggest increased randomness at the solid-solution interface during adsorption [94]. Regeneration and reuse are critical for assessing economic feasibility and environmental sustainability [95]. Desorption using dilute acids, alkalis, or chelating agents commonly restores 70-95% of adsorption capacity over multiple cycles; however, repeated regeneration may gradually reduce performance due to structural degradation or irreversible metal binding [96-100]. Therefore, comprehensive evaluation of adsorption modeling and regeneration behavior is essential for scaling biosorption technologies from laboratory investigations to real-world wastewater treatment applications [101-103].

#### 4. Impact of Biomass Modification on Biosorption Performance

The biosorption capacity of raw biomass can be greatly enhanced through various modification techniques that improve their physical and chemical properties (Figure 2). These modifications including chemical (acidic or alkaline), physical (thermal, microwave), and biological (enzymatic) treatments increase surface area, porosity, and the density and

accessibility of functional groups responsible for HMs binding, resulting in improved adsorption performance suitable for practical wastewater treatment [104,105].



**Figure 3.** Schematic illustration of major modification strategies applied to biomass-derived adsorbents, including chemical, physical, biological, and bio-nanocomposite approaches.

#### 4.1 Chemical Modification

Chemical treatments are widely used to enhance biosorption by altering surface functional groups and increasing porosity (Figure 2) [106,107]. Acid treatments with mineral acids (e.g.,  $\text{HNO}_3$ ,  $\text{H}_3\text{PO}_4$ ) hydrolyze hemicellulose and lignin, removing impurities and exposing carboxyl, hydroxyl, and phosphate groups, which improves metal binding via electrostatic attraction and complexation [108,109]. Alkaline treatments ( $\text{NaOH}$ ,  $\text{KOH}$ ) swell the biomass matrix and deprotonate acidic groups, generating more negatively charged sites for cation adsorption [110-112]. For example,  $\text{NaOH}$ -treated lemon peel showed a 2.5-fold increase in  $\text{Ni}^{(II)}$  adsorption capacity, highlighting the effectiveness of chemical modification [113].

#### 4.2 Physical Modification

Physical methods like thermal activation, microwave irradiation, pyrolysis, and steam activation enhance biomass structure by increasing surface area and pore volume [114,115]. Thermal activation decomposes biomass components, creating a porous, carbon-rich matrix that improves diffusion and adsorption [116,117]. Microwave treatment offers rapid, uniform heating to develop pore networks efficiently [118-120]. Combined chemical-physical modifications, such as phosphoric acid-assisted thermal activation of sugarcane bagasse, synergistically increase adsorption capacity (e.g.,  $\text{Cr}^{(VI)}$  uptake up to 98.15 mg/g) [121]. These physical methods make biosorbents more effective and scalable for industrial use [122].

#### 4.3 Biological Modification

Biological or enzymatic treatments use specific enzymes or microbes to selectively degrade lignin, hemicellulose, and other polymers, increasing surface accessibility and exposing functional groups without harsh chemicals or high temperatures [123-125]. Enzymes like cellulases and lignin-degrading oxidases improve surface roughness and active site availability, while fungi and bacteria can further enhance porosity and introduce new binding sites [126,127]. Though slower and more sensitive to conditions than chemical methods, biological modifications offer eco-friendly alternatives with high selectivity.

#### 4.4 Quantitative Correlations and Mechanistic Insights

Studies reveal strong correlations ( $R^2 > 0.95$ ) between the density of functional groups especially carboxyl groups and metal adsorption capacity, indicating surface chemistry plays a more critical role than surface area alone [128]. Metals bind primarily through deprotonated carboxyl groups forming coordination bonds and ion-exchange interactions, as confirmed by spectroscopic analyses (fourier transform infrared spectroscopy (FTIR), X-ray Photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR)) [129,130]. These insights underscore the importance of targeted functional group engineering to systematically enhance biosorption efficiency.

#### 4.5 Enhanced Performance in Continuous-Flow Systems

Testing biosorbents in continuous-flow setups (e.g., fixed-bed columns) simulates real wastewater conditions better than batch tests, revealing improved stability, regeneration, and mass transfer kinetics [131]. For example, chemically modified rice husks maintained ~90% Cr (VI) removal efficiency after 10 adsorption-desorption cycles, demonstrating durability and practical viability [132]. Such performance is crucial for reducing costs and waste in industrial applications.

#### 4.6 Synergistic Modifications and Future Directions

Combining multiple modification techniques (chemical, physical, biological) often yields synergistic improvements in surface properties and adsorption capacity [133]. Incorporating nanomaterials like metal oxides (tungsten oxide ( $WO_3$ )) into biomass matrices creates multifunctional bio-nanocomposites with enhanced adsorption, photocatalytic reduction, and easy magnetic recovery [134]. Future research should focus on optimizing modification methods for cost-effectiveness, long-term stability, scalability, integration with microbial remediation, and environmental sustainability through LCA to advance real-world applications.

Recent studies emphasize that adsorption efficiency is not governed by surface area alone, but strongly correlates with the density and accessibility of oxygen- and nitrogen-containing functional groups [135]. Spectroscopic evidence from FTIR and XPS confirms that deprotonated carboxyl and amino groups dominate metal binding through coordination and ion-exchange mechanisms [136]. Therefore, rational functional group engineering, rather than excessive thermal activation, is increasingly recognized as the most energy-efficient pathway for enhancing biosorption capacity [137]. This insight supports the design of targeted low-temperature modification techniques suitable for decentralized and resource-limited wastewater treatment applications [138].

### 5. Application of Biomass-Derived Adsorbents for HMs Removal

Biomass-derived adsorbents have gained widespread attention as sustainable, low-cost solutions for removing HMs from contaminated water. Their abundance, biodegradability, and diverse functional groups enable efficient binding of toxic metals like Ni, Co, and Cr. Additionally, hybrid materials such as  $WO_3$  nanostructures combined with biomass show promising multifunctional remediation properties.

#### 5.1 Nickel

Nickel pollution arises mainly from electroplating, mining, and battery industries, posing serious health risks including carcinogenic and respiratory effects [139]. Biosorption using agricultural waste such as lemon peels, rice husks, and banana peels has shown Ni (II) removal efficiencies often exceeding 90%, sometimes approaching complete removal [140]. Chemical modifications, particularly alkaline treatments with NaOH, significantly boost adsorption capacity by increasing the ionization of functional groups like carboxyl and hydroxyl, enhancing electrostatic attraction and complexation [141]. Adsorption kinetics typically follow a pseudo-second-order model, indicating chemical bonding governs the process, while Langmuir isotherms suggest monolayer adsorption on uniform sites [142]. These characteristics support the practical use of biomass adsorbents for scalable Ni (II) wastewater treatment.

#### 5.2 Cobalt

Cobalt, extensively used in batteries and alloys, can cause cardiotoxicity and genotoxicity when present in excess [143]. Biochar from mustard stalks, algae, and coconut shells effectively removes Co (II), especially after acid activation (e.g., with  $HNO_3$ ), which enhances surface acidity and functional group exposure. Marine macroalgae and aquatic plants like water hyacinth also provide abundant sulfate, carboxyl, and amino groups that bind  $Co^{2+}$  via electrostatic and ion-exchange mechanisms [144]. Co (II) adsorption commonly follows pseudo-second-order kinetics and fits Langmuir isotherms, reflecting chemisorption on homogeneous surfaces [145]. These biosorbents offer a renewable, low-cost option for Co remediation in industrial effluents [146].

#### 5.3 Chromium

Hexavalent chromium Cr (VI) is highly toxic and carcinogenic, requiring efficient removal methods [147-150]. Agricultural wastes such as mango leaves, orange peels, and sugarcane bagasse exhibit high Cr (VI) adsorption efficiencies; mango leaf powder achieves up to 99.13% removal [151]. Modified composites, like polypyrrole-coated sugarcane bagasse, show enhanced capacities (up to 251 mg/g) due to nitrogenous groups facilitating electrostatic and redox interactions [152]. Adsorption fits Langmuir and Temkin isotherms, indicating monolayer coverage and adsorbate-adsorbent interaction effects [153]. Kinetics typically follow a pseudo-second-order model, driven by chemical adsorption coupled with reduction of Cr (VI) to less toxic Cr (III), improving detoxification. These biomass-based adsorbents hold great promise for large-scale Cr (VI) treatment [154].

#### 5.4 Emerging Materials: Tungsten Oxide Nanostructures

While pure biomass adsorbents are effective, their integration with functional nanomaterials can create superior hybrid systems.  $\text{WO}_3$  nanostructures, known for their visible-light photocatalysis and high surface area, are particularly promising for creating advanced bio-nano composites. When combined with biomass substrates (e.g., biochar, cellulose), these composites leverage the high adsorption capacity of the biomass with the photocatalytic activity of  $\text{WO}_3$ , enabling not just adsorption but also the reduction and detoxification of metals like Cr (VI) [155]. Doping with metals (Fe, Ag, Cu) can further enhance functionality, such as adding magnetic recoverability. These hybrids represent a strategic evolution of biomass-derived adsorbents, moving beyond passive adsorption to active, multi-functional remediation [156]. However, challenges in scalable synthesis of the hybrids, nanoparticle stability, and real wastewater performance must be addressed to translate these promising lab-scale materials into practical applications [157-160].

### 6. Challenges and Future Directions

Despite the promising advances in biomass-derived biosorbents for HMs remediation, several critical challenges remain that hinder the transition from laboratory research to large-scale, practical applications. Addressing these challenges requires multidisciplinary approaches that combine material science, microbiology, environmental engineering, and computational modeling. Below, key challenges and prospective future directions are discussed in detail.

#### 6.1 Scalability and Regeneration

Scaling up biosorption from lab batch studies to continuous-flow industrial systems faces operational hurdles like clogging, pressure drops, and uneven flow, which reduce biosorbent lifespan and raise maintenance costs. For example, sugarcane bagasse in pilot bioreactors showed 90% Cr (VI) removal but suffered clogging after 15 cycles [161]. Modular bioreactor designs can help mitigate these issues by facilitating maintenance and adapting to variable wastewater volumes. Regeneration and reuse remain critical for economic viability; chemically modified biosorbents (e.g., NaOH-treated lemon peels) have demonstrated around 90% capacity retention over multiple cycles under ideal conditions [162]. However, their long-term performance in real wastewater with fluctuating contaminant loads is understudied. Future research should develop environmentally friendly, cost-effective regeneration techniques such as mild chemical or electrochemical methods and integrate biosorption with metal recovery to enhance sustainability.

#### 6.2 Multi-Metal Systems and Real Wastewater Complexity

Most studies focus on single-metal removal in controlled settings, while actual wastewaters contain complex mixtures of metals and organics that compete for adsorption sites, often lowering efficiency. For example, Ni (II) uptake can drop by about 20% when Cr (VI) coexists due to site competition [163]. Natural organic matter, pH variability, and ionic strength further complicate performance. To tackle these challenges, AI and machine learning (ML) models have recently shown promise in predicting competitive adsorption with up to 95% accuracy, guiding selective biosorbent design tailored to complex wastewater [163]. Nonetheless, extensive real wastewater testing and field trials are essential to validate these models and ensure robust performance under dynamic conditions.

#### 6.3 Integration with Microbial Bioremediation

Combining biosorption with microbial bioremediation offers synergistic benefits by coupling metal adsorption with microbial transformation or reduction. For instance, rice husk biochar paired with *Methylococcus capsulatus* achieved up to 95% Cr (VI) detoxification by reducing it to less toxic Cr (III). Developing multifunctional bio-nanocomposites that integrate microbes with modified biomass could harness combined mechanisms of adsorption, enzymatic reduction, and photocatalysis. Optimizing interactions such as biofilm formation and metal bioavailability will be key to advancing these hybrid systems [164].

#### 6.4 Life Cycle Assessment

Though biosorption is generally eco-friendly, comprehensive LCAs are vital to quantify its overall environmental footprint across production, use, and disposal stages. A 2024 LCA revealed rice husk biochar emits about 50% less  $\text{CO}_2$  compared to activated carbon, highlighting its sustainability advantage [165]. However, data are scarce on energy-intensive modifications like nanoparticle doping or thermal activation [165]. Balancing performance gains with environmental impacts requires thorough LCA and techno-economic assessments to guide sustainable biosorbent development and inform policies aligned with climate goals.

#### 6.5 AI and Computational Modeling

AI and ML have emerged as promising tools to enhance biosorbent design and optimize treatment processes. Recent studies have demonstrated practical applications of ML models that accurately predict adsorption capacities—for example, achieving up to 95% accuracy in estimating Ni (II) uptake based on parameters such as pH, surface area, and

functional group density [166]. These models move beyond conceptual discussions by providing actionable insights for tailoring biosorbent properties and guiding experimental design [167].

Furthermore, integration of AI with real-time monitoring systems in wastewater treatment facilities shows potential to dynamically adjust operational parameters like flow rate, pH, and regeneration cycles, improving treatment efficiency and reducing operational costs [168]. However, challenges remain in developing hybrid modeling frameworks that effectively combine mechanistic understanding with data-driven approaches. To address this, ongoing research is increasingly focused on interdisciplinary collaborations that merge material science, environmental engineering, and computational expertise. Such efforts aim to transition AI-enhanced biosorption technologies from theoretical concepts toward scalable, real-world applications. Future work should also prioritize validating AI models under diverse, complex wastewater conditions to ensure practical robustness and reliability.

## 7. Conclusion

Biomass-derived biosorbents represent a practical, sustainable, and low-cost solution for the treatment of HM-contaminated wastewater, particularly in regions with abundant agricultural and industrial biomass residues. Their strong metal-binding capability, environmental compatibility, and potential for local production position them as viable alternatives to conventional treatment technologies. While laboratory-scale studies clearly demonstrate their effectiveness, wider adoption requires addressing key challenges related to scalability, performance in real wastewater systems, and long-term operational stability. Future efforts should prioritize the development of simple, locally adaptable modification methods, validation under field conditions, and integration into existing decentralized treatment infrastructures. With targeted research, policy support, and pilot-scale implementation, biomass-based biosorption technologies can play a meaningful role in advancing sustainable water management and protecting public and environmental health.

## Funding Statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

## Conflict of Interest Statement

The authors confirm that there are no known financial or personal conflicts of interest that could have influenced the findings or interpretations presented in this study.

## Generative AI Statement

The author declares that no Generative AI (GenAI) was used in the creation of this manuscript.

## References

- [1] Wang L, Wang Y, Ma F, Tankpa V, Bai S, Guo X, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. *Science of The Total Environment*, 2019, 668, 1298-1309. DOI: 10.1016/j.scitotenv.2019.03.011
- [2] Chen Z, Pan K. Enhanced removal of Cr (VI) via in-situ synergistic reduction and fixation by polypyrrole/sugarcane bagasse composites. *Chemosphere*, 2021, 272, 129606. DOI: 10.1016/j.chemosphere.2021.129606
- [3] Babel S, Kurniawan TA. Low-cost adsorbents for HMs uptake from contaminated water: A review. *Journal of Hazardous Materials*, 2003, 97(1-3), 219-243. DOI: 10.1016/S0304-3894(02)00263-7
- [4] Acosta-Rodríguez I, Rodríguez-Pérez A, Pacheco-Castillo NC, Enríquez-Domínguez E, Cárdenas-González JF, Martínez-Juárez VM. Removal of Cobalt (II) from waters contaminated by the biomass of Eichhornia crassipes. *Water*, 2021, 13(13), 1725. DOI: 10.3390/w13131725
- [5] Herrera-Barros A, Bitar-Castro N, Villabona-Ortíz Á, Tejada-Tovar C, González-Delgado ÁD. Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO<sub>2</sub> nanoparticles. *Sustainable Chemistry and Pharmacy*, 2020, 17, 100299. DOI: 10.1016/j.scp.2020.100299
- [6] Chowdhury S, Mazumder MJ, Al-Attas O, Husain T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. *Science of The Total Environment*, 2016, 569-570, 476-488. DOI: 10.1016/j.scitotenv.2016.06.166
- [7] Karri RR, Sahu JN, Meikap BC. Improving efficacy of Cr (VI) adsorption process on sustainable adsorbent derived from waste biomass (sugarcane bagasse) with help of ant colony optimization. *Industrial Crops and Products*, 2020, 143, 111927. DOI: 10.1016/j.indcrop.2019.111927
- [8] Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, et al. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. *Chemosphere*, 2022, 287, 131959. DOI: 10.1016/j.chemosphere.2021.131959
- [9] Villen-Guzman M, Cerrillo-Gonzalez MD, Paz-Garcia JM, Rodriguez-Maroto JM, Arhoun B. Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents. *Environmental Technology &*

Innovation, 2021, 21, 101380. DOI: 10.1016/j.eti.2021.101380

[10] Xie P, Zahoor F, Iqbal SS, Ullah S, Noman M, Din ZU, et al. Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. *Journal of Cleaner Production*, 2022, 352, 131358. DOI: 10.1016/j.jclepro.2022.131358

[11] Shaukat S, Hassani MA, Yadgari MY, Ullah S, Iqbal MS, Khan F, et al. Green synthesis of silver nanoparticles and its application towards As (V) removal from aqueous systems. *Digest Journal of Nanomaterials & Biostructures (DJNB)*, 2022, 17(4), 1385-1398. DOI: 10.15251/DJNB.2022.174.1385

[12] Noman M, Haziq MA, Safi BU, Ullah S, Rukh G, Faiq ME, et al. Lead (II) adsorption from aqueous systems using visible light activated cobalt doped zinc oxide nanoparticles. *Digest Journal of Nanomaterials & Biostructures (DJNB)*, 2022, 17(3), 839-849. DOI: 10.15251/DJNB.2022.173.839

[13] Ullah S, Shams DF, Ur Rehman SA, Khattak SA, Noman M, Rukh G, et al. Application of visible light activated thiolated cobalt doped ZnO nanoparticles towards arsenic removal from aqueous systems. *Digest Journal of Nanomaterials & Biostructures (DJNB)*, 2022, 17(2), 443-455. DOI: 10.15251/DJNB.2022.172.443

[14] Li L, Haziq MA, Ullah S, Stanikzai AG, Bibi SD, Haq TU, et al. Remediation of lead-contaminated water using green synthesized iron-oxide nanoparticles: Performance and mechanism. *Air, Soil and Water Research*, 2024, 17, 11786221241278517. DOI: 10.1177/11786221241278517

[15] Hussain T, Akhter N, Nadeem R, Rashid U, Noreen S, Anjum S, et al. Biogenic synthesis of date stones biochar-based zirconium oxide nanocomposite for the removal of hexavalent chromium from aqueous solution. *Applied Nanoscience*, 2023, 13(9), 6053-6066. DOI: 10.1007/s13204-022-02599-z

[16] Yadgari MY, Subat S, Rashid S, Ullah S, Li L, Hassani MA, et al. Toxic effects of arsenic and its adsorption through thiolated cobalt doped silver nanomaterials from water resources. *Digest Journal of Nanomaterials & Biostructures (DJNB)*, 2023, 18(4), 1339-1350. DOI: 10.15251/DJNB.2023.184.1339

[17] Fitzgerald WF, Clarkson TW. Mercury and monomethyl mercury: Present and future concerns. *Environmental Health Perspectives*, 1991, 96, 159-166. DOI: 10.1289/ehp.9196159

[18] Järup L. Hazards of HM contamination. *British Medical Bulletin*, 2003, 68(1), 167-182. DOI: 10.1093/bmb/ldg032

[19] Kurniawan TA, Chan GY, Lo WH, Babel S. Physico-chemical treatment techniques for wastewater laden with heavy metals. *Chemical Engineering Journal*, 2006, 118(1-2), 83-98. DOI: 10.1016/j.cej.2006.01.015

[20] Lizcano-Delgado YY, Martínez-Vázquez OT, Cristiani-Urbina E, Morales-Barrera L. Onion Peel: A promising, economical, and Eco-friendly alternative for the removal of divalent cobalt from aqueous solutions. *Processes*, 2024, 12(6), 1263. DOI: 10.3390/pr12061263

[21] Lucaci AR, Bulgariu D, Ahmad I, Lisă G, Mocanu AM, Bulgariu L. Potential use of biochar from various waste biomass as biosorbent in Co (II) removal processes. *Water*, 2019, 11(8), 1565. DOI: 10.3390/w11081565

[22] Mahato N, Agarwal P, Mohapatra D, Sinha M, Dhyani A, Pathak B, et al. Biotransformation of citrus waste-II: Bio-sorbent materials for removal of dyes, heavy metals and toxic chemicals from polluted water. *Processes*, 2021, 9(9), 1544. DOI: 10.3390/pr9091544

[23] Maity S, Patil PB, SenSharma S, Sarkar A. Bioremediation of heavy metals from the aqueous environment using *Artocarpus heterophyllus* (jackfruit) seed as a novel biosorbent. *Chemosphere*, 2022, 307, 136115. DOI: 10.1016/j.chemosphere.2022.136115

[24] Mohan D, Singh KP. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. *Water Research*, 2002, 36(9), 2304-2318. DOI: 10.1016/S0043-1354(01)00447-X

[25] Negruoi M, Turcanu AA, Matei E, Răpă M, Covaliu CI, Predescu AM, et al. Novel adsorbent based on banana peel waste for removal of heavy metal ions from synthetic solutions. *Materials*, 2021, 14(14), 3946. DOI: 10.3390/ma14143946

[26] Radenković M, Petrović J, Pap S, Kalijadis A, Momčilović M, Krstulović N, et al. Waste biomass derived highly-porous carbon material for toxic metal removal: Optimization, mechanisms and environmental implications. *Chemosphere*, 2024, 347, 140684. DOI: 10.1016/j.chemosphere.2023.140684

[27] Rahman MM, Maniruzzaman M, Mahmud P, Khatun S, Hossain MK, Hossain MI, et al. Adsorptive removal of toxic HM and dyes from wastewater by rice husk (lignocellulosic biomass) derived activated biochar: A fixed-bed column adsorption study. *Carbohydrate Polymer Technologies and Applications*, 2025, 9, 100698. DOI: 10.1016/j.carpta.2025.100698

[28] Saleh AK, Aboelghait KM, El-Fakharany EM, El-Gendi H. Multifunctional engineering of *Mangifera indica* L. peel extract-modified bacterial cellulose hydrogel: Unveiling novel strategies for enhanced heavy metal sequestration and cytotoxicity evaluation. *International Journal of Biological Macromolecules*, 2024, 278, 134874. DOI: 10.1016/j.ijbiomac.2024.134874

[29] Saleh HM, Mahmoud HH, Aglan RF. Ecofriendly technique for the treatment of water contaminated with stable and radioactive cobalt through an adsorption process using dried prickly pear residues. *Annals of Nuclear Energy*, 2025, 222, 111588. DOI: 10.1016/j.anucene.2025.111588

[30] Ansari AS, Azzahra G, Nugroho FG, Mujtaba MM, Ahmed AT. Oxides and metal oxide/carbon hybrid materials for efficient photocatalytic organic pollutant removal. *Catalysts*, 2025, 15(2), 134. DOI: 10.3390/catal15020134

[31] Singh RJ, Martin CE, Barr D, Rosengren RJ. Immobilised apple peel bead biosorbent for the simultaneous removal of HMs from cocktail solution. *Cogent Environmental Science*, 2019, 5(1), 1673116. DOI: 10.1080/23311843.2019.1673116

[32] Tariq A, Yahaya N, Sajid M. Low-cost adsorbents derived from vegetables and fruits: Synthesis, properties, and applications in removal of heavy metals from water. *Desalination and Water Treatment*, 2024, 320, 100626. DOI: 10.1016/j.dwt.2024.100626

[33] Tuomikoski S, Runtti H, Romar H, Lassi U, Kangas T. Multiple heavy metal removal simultaneously by a biomass-based porous carbon. *Water Environment Research*, 2021, 93(8), 1303-1314. DOI: 10.1002/wer.1514

[34] Ugwu EI, Agunwamba JC. A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater. *Environmental Monitoring and Assessment*, 2020, 192(4), 240. DOI: 10.1007/s10661-020-8162-0

[35] Villen-Guzman M, Gutierrez-Pinilla D, Gomez-Lahoz C, Vereda-Alonso C, Rodríguez-Maroto JM, Arhoun B. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. *Environmental Research*, 2019, 179, 108849. DOI: 10.1016/j.envres.2019.108849

[36] Wei J, Duan Y, Li M, Lin H, Lv J, Chen Z, et al. A novel manganese sulfide encapsulating biochar-dispersed zero-valent iron composite for high removal ability of Cr (VI) in water and its mechanism. *Colloids and Surfaces A: Physicochemical and*

Engineering Aspects, 2023, 658, 130556. DOI: 10.1016/j.colsurfa.2022.130556

[37] Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, 157, 141-161. DOI: 10.1016/j.seppur.2015.11.039

[38] Kumar PS, Gayathri R, Rathi BS. A review on adsorptive separation of toxic metals from aquatic system using biochar produced from agro-waste. Chemosphere, 2021, 285, 131438. DOI: 10.1016/j.chemosphere.2021.131438

[39] Sangamnere R, Misra T, Bherwani H, Kapley A, Kumar R. A critical review of conventional and emerging wastewater treatment technologies. Sustainable Water Resources Management, 2023, 9(2), 58. DOI: 10.1007/s40899-023-00829-y

[40] Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environmental Science and Pollution Research, 2021, 28(8), 9050-9066. DOI: 10.1007/s11356-021-12395-x

[41] Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 2014, 21(14), 8336-8367. DOI: 10.1007/s11356-014-2783-1

[42] Jha S, Mishra BK. An overview of deploying different treatment processes with membrane bioreactor for enhanced treatment of wastewaters: Synergistic performances and reduced fouling of membrane. Environmental Science and Pollution Research, 2024, 31(55), 63603-63634. DOI: 10.1007/s11356-024-35459-0

[43] Liu Z, Ma Z, Qian B, Chan AY, Wang X, Liu Y, et al. A facile and scalable method of fabrication of large-area ultrathin graphene oxide nanofiltration membrane. ACS Nano, 2021, 15(9), 15294-15305. DOI: 10.1021/acsnano.1c06155

[44] El-Sheekh MM, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: An approach towards environmental sustainability. Microbial Cell Factories, 2025, 24(1), 19. DOI: 10.1186/s12934-024-02638-0

[45] Abonyi MN, Obi CC, Nwabanne JT, Aniagor CO. Emerging and ecofriendly biological methods for agricultural wastewater treatment. Environmental Systems Research, 2024, 13(1), 45. DOI: 10.1186/s40068-024-00373-4

[46] Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. Journal of Hazardous Materials, 2024, 469, 133906. DOI: 10.1016/j.jhazmat.2024.133906

[47] Chettri D, Verma AK, Verma AK. Bioaugmentation: An approach to biological treatment of pollutants. Biodegradation, 2024, 35(2), 117-135. DOI: 10.1007/s10532-023-10050-5

[48] Buxton S, Garman E, Heim KE, Lyons-Darden T, Schlekat CE, Taylor MD, et al. Concise review of nickel human health toxicology and ecotoxicology. Inorganics, 2019, 7(7), 89. DOI: 10.3390/inorganics7070089

[49] Mohanty S, Benya A, Hota S, Kumar MS, Singh S. Eco-toxicity of hexavalent chromium and its adverse impact on environment and human health in Sukinda Valley of India: A review on pollution and prevention strategies. Environmental Chemistry and Ecotoxicology, 2023, 5, 46-54. DOI: 10.1016/j.enceco.2023.01.002

[50] Stubblefield WA, Van Genderen E, Cardwell AS, Heijerick DG, Janssen CR, De Schamphelaere KA. Acute and chronic toxicity of cobalt to freshwater organisms: Using a species sensitivity distribution approach to establish international water quality standards. Environmental Toxicology and Chemistry, 2020, 39(4), 799-811. DOI: 10.1002/etc.4662

[51] Filote C, Roșca M, Hilihor RM, Cozma P, Simion IM, Apostol M, et al. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: Current practice. Processes, 2021, 9(10), 1696. DOI: 10.3390/pr9101696

[52] Staszak K, Regel-Rosocka M. Removing heavy metals: cutting-edge strategies and advancements in biosorption technology. Materials, 2024, 17(5), 1155. DOI: 10.3390/ma17051155

[53] Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 2018, 26, 289-300. DOI: 10.1016/j.jwpe.2018.11.003

[54] Gunaratne V, Rajapaksha AU, Vithanage M, Alessi DS, Selvasembian R, Naushad M, et al. Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 2022, 52(6), 1022-1062. DOI: 10.1080/10643389.2020.1847949

[55] Alsawy T, Rashad E, El-Qelish M, Mohammed RH. A comprehensive review on the chemical regeneration of biochar adsorbent for sustainable wastewater treatment. NPJ Clean Water, 2022, 5(1), 29. DOI: 10.1038/s41545-022-00172-3

[56] Qasem NA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water, 2021, 4(1), 36. DOI: 10.1038/s41545-021-00127-0

[57] Azmi LS. Membrane filtration technologies for sustainable industrial wastewater treatment: A review of heavy metal removal. Desalination and Water Treatment, 2025, 101321. DOI: 10.1016/j.dwt.2025.101321

[58] Ghernaout D, Naceur MW, Ghernaout B. A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflootation. Desalination and Water Treatment, 2011, 28(1-3), 287-320. DOI: 10.5004/dwt.2011.1493

[59] Priya AK, Muruganandam M, Ali SS, Kornaros M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics, 2023, 11(5), 422. DOI: 10.3390/toxics11050422

[60] Macena M, Pereira H, Cruz-Lopes L, Grosche L, Esteves B. Competitive adsorption of metal ions by lignocellulosic materials: A review of applications, mechanisms and influencing factors. Separations, 2025, 12(3), 70. DOI: 10.3390/separations12030070

[61] Zhang X, Xiong Y, Wang X, Wen Z, Xu X, Cui J, et al. MgO-modified biochar by modifying hydroxyl and amino groups for selective phosphate removal: Insight into phosphate selectivity adsorption mechanism through experimental and theoretical. Science of The Total Environment, 2024, 918, 170571. DOI: 10.1016/j.scitotenv.2024.170571

[62] Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, et al. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters, 2019, 17(2), 729-754. DOI: 10.1007/s10311-018-00828-y

[63] Cook TR, Stang PJ. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chemical Reviews, 2015, 115(15), 7001-7045. DOI: 10.1021/cr5005666

[64] He HT, Xing LC, Zhang JS, Tang M. Binding characteristics of  $Cd^{2+}$ ,  $Zn^{2+}$ ,  $Cu^{2+}$ , and  $Li^{+}$  with humic substances: Implication to trace element enrichment in low-rank coals. Energy Exploration & Exploitation, 2016, 34(5), 735-745. DOI:

10.1177/0144598716656067

[65] Zheng J, Lu Z, Wu K, Ning GH, Li D. Coinage-metal-based cyclic trinuclear complexes with metal-metal interactions: Theories to experiments and structures to functions. *Chemical Reviews*, 2020, 120(17), 9675-9742. DOI: 10.1021/acs.chemrev.0c00011

[66] Deng S, Ting YP. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr (VI) anions: Sorption capacity and uptake mechanisms. *Environmental Science & Technology*, 2005, 39(21), 8490-8496. DOI: 10.1021/es050697u

[67] Abdolali A, Ngo HH, Guo W, Zhou JL, Du B, Wei Q, et al. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. *Bioresource Technology*, 2015, 193, 477-487. DOI: 10.1016/j.biortech.2015.06.123

[68] Ramrakhiani L, Halder A, Majumder A, Mandal AK, Majumdar S, Ghosh S. Industrial waste derived biosorbent for toxic metal remediation: Mechanism studies and spent biosorbent management. *Chemical Engineering Journal*, 2017, 308, 1048-1064. DOI: 10.1016/j.cej.2016.09.145

[69] Pathirana C, Ziyath AM, Jinadasa KB, Egodawatta P, Sarina S, Goonetilleke A. Quantifying the influence of surface physico-chemical properties of biosorbents on heavy metal adsorption. *Chemosphere* 2019 234 488-495. DOI: 10.1016/j.chemosphere.2019.06.074

[70] Priyadarshanee M, Das S. Multifaceted response surface methodology unravels competitive heavy metal adsorption affinity of immobilized biosorbent formulated from bacterial extracellular polymer of *Pseudomonas aeruginosa* OMCS-1. *Chemosphere*, 2024, 368, 143681. DOI: 10.1016/j.chemosphere.2024.143681

[71] Saikia S, Costa RB, Sinharoy A, Cunha MP, Zaiat M, Lens PN. Selective removal and recovery of gallium and germanium from synthetic zinc refinery residues using biosorption and bioprecipitation. *Journal of Environmental Management*, 2022, 317, 115396. DOI: 10.1016/j.jenvman.2022.115396

[72] Xiao C, Shi P, Yan W, Chen L, Qian L, Kim SH. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. *Colloids and Interfaces*, 2019, 3(3), 55. DOI: 10.3390/colloids3030055

[73] Xia M, Chen Z, Li Y, Li C, Ahmad NM, Cheema WA, et al. Removal of Hg (II) in aqueous solutions through physical and chemical adsorption principles. *RSC Advances*, 2019, 9(36), 20941-20953. DOI: 10.1039/C9RA01924C

[74] Wang G, Liu Y, Zu B, Lei D, Guo Y, Wang M, et al. Reversible adhesive hydrogel with enhanced sampling efficiency boosted by hydrogen bond and van der Waals force for visualized detection. *Chemical Engineering Journal*, 2023, 455, 140493. DOI: 10.1016/j.cej.2022.140493

[75] Gorohovs M, Dekhtyar Y. Surface functionalization of nanoparticles for enhanced electrostatic adsorption of biomolecules. *Molecules*, 2025, 30(15), 3206. DOI: 10.3390/molecules30153206

[76] Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, et al. Controlling interfacial dynamics: Covalent bonding versus physical adsorption in polymer nanocomposites. *ACS Nano*, 2016, 10(7), 6843-6852. DOI: 10.1021/acsnano.6b02501

[77] Silva Almeida C, Simão Neto F, da Silva Sousa P, da Silva Aires FI, de Matos Filho JR, Gama Cavalcante AL, et al. Enhancing lipase immobilization via physical adsorption: Advancements in stability, reusability, and industrial applications for sustainable biotechnological processes. *ACS Omega*, 2024, 9(47), 46698-46732. DOI: 10.1021/acsomega.4c07088

[78] Escudero LB, Quintas PY, Wuilloud RG, Dotto GL. Recent advances on elemental biosorption. *Environmental Chemistry Letters*, 2019, 17(1), 409-427. DOI: 10.1007/s10311-018-0816-6

[79] Ramrakhiani L, Ghosh S, Majumdar S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review. *Applied Biochemistry and Biotechnology*, 2016, 180(1), 41-78. DOI: 10.1007/s12010-016-2083-y

[80] He J, Chen JP. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. *Bioresource Technology*, 2014, 160, 67-78. DOI: 10.1016/j.biortech.2014.01.068

[81] Raji Z, Karim A, Karam A, Khaloufi S. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—a review. *Waste*, 2023, 1(3), 775-805. DOI: 10.3390/waste1030046

[82] Abdolali A, Ngo HH, Guo W, Lu S, Chen SS, Nguyen NC, et al. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. *Science of the Total Environment*, 2016, 542, 603-611. DOI: 10.1016/j.scitotenv.2015.10.095

[83] Abiodun OA, Oluwaseun O, Oladayo OK, Abayomi O, George AA, Opatola E, et al. Remediation of heavy metals using biomass-based adsorbents: Adsorption kinetics and isotherm models. *Clean Technologies*, 2023, 5(3), 934-960. DOI: 10.3390/cleantechnol5030047

[84] Guesmi A, Hamadi NB, Abd El-Fattah W, El-Binary MA, El-Desouky MG, El-Binary AA. Structural, thermodynamics, and mechanistic insights into a tobacco-waste derived activated carbon/polysaccharide composite sponge for efficient Cr (vi) adsorption and reusability. *RSC Advances*, 2025, 15(57), 48816-48846. DOI: 10.1039/D5RA07331F

[85] Alkhaldi H, Alharthi S, Alharthi S, AlGhamdi HA, AlZahrani YM, Mahmoud SA, et al. Sustainable polymeric adsorbents for adsorption-based water remediation and pathogen deactivation: A review. *RSC Advances*, 2024, 14(45), 33143-33190. DOI: 10.1039/D4RA05269B

[86] KKaur P, Kumar S, Rani J, Babu J, Mittal S. Comparison of surface adsorption efficacies of eco-sustainable agro/animal biomass-derived activated carbon for the removal of rhodamine B and hexavalent chromium. *Environmental Science and Pollution Research*, 2024, 31, 52371-52390. DOI: 10.1007/s11356-024-34686-9

[87] Emmanuel SS, Adesibikan AA, Ore OT, Bayode AA, Badamasi H, Sanni SO, et al. A comprehensive review on biomass waste-derived biochar for sustainable adsorptive remediation of hazardous radio-contaminants. *Waste and Biomass Valorization*, 2025, 16, 2029-2073. DOI: 10.1007/s12649-025-02965-2

[88] Ng KC, Burhan M, Shahzad MW, Ismail AB. A universal isotherm model to capture adsorption uptake and energy distribution of porous heterogeneous surface. *Scientific Reports*, 2017, 7, 10634. DOI: 10.1038/s41598-017-11156-6

[89] Mechnoi I, Meskini S, Elqars E, Chham AI, Hlaibi M. Classical and advanced isotherms to model the adsorption of drugs, dyes and metals on activated carbonaceous materials: A review. *Environmental Chemistry Letters*, 2024, 22, 2375-2404. DOI: 10.1007/s10311-024-01759-7

[90] Sahmoune MN. Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. *Environmental Chemistry Letters*, 2019, 17, 697-704. DOI: 10.1007/s10311-018-00819-z

[91] Mussa ZH, Al-Ameer LR, Al-Qaim FF, Deyab IF, Kamyab H, Chelliapan S. A comprehensive review on adsorption of methylene blue dye using leaf waste as a bio-sorbent: isotherm adsorption, kinetics, and thermodynamics studies.

Environmental Monitoring and Assessment, 2023, 195, 940. DOI: 10.1007/s10661-023-11432-1

[92] Nnaji CC, Agim AE, Mama CN, Emenike PC, Ogarekpe NM. Equilibrium and thermodynamic investigation of biosorption of nickel from water by activated carbon made from palm kernel chaff. *Scientific Reports*, 2021, 11, 7808. DOI: 10.1038/s41598-021-86932-6

[93] Manzoor A, Pandey S, Chakraborty D, Phillipot SR, Aidhy DS. Entropy contributions to phase stability in binary random solid solutions. *NPJ Computational Materials*, 2018, 4, 47. DOI: 10.1038/s41524-018-0102-y

[94] Ling Felicia WX, Rovina K, Supri S, Matanjun P, Mohd Amin SF, Abdul Rahman MN. Next-generation sodium alginate hydrogels for heavy metal ion removal: Properties, dynamic adsorption-desorption mechanisms, and sustainable application potential. *Polymer Bulletin*, 2025, 82, 10587-10637. DOI: 10.1007/s00289-025-05956-4

[95] Moghal AA, Mohammed SA, Almajed A, Al-Shamrani MA. Desorption of heavy metals from lime-stabilized arid-soils using different extractants. *International Journal of Civil Engineering*, 2020, 18, 449-461. DOI: 10.1007/s40999-019-00453-y

[96] Chatterjee A, Abraham J. Desorption of heavy metals from metal loaded sorbents and e-wastes: A review. *Biotechnology Letters*, 2019, 41, 319-333. DOI: 10.1007/s10529-019-02650-0

[97] Lata S, Singh PK, Samadder SR. Regeneration of adsorbents and recovery of heavy metals: A review. *International Journal of Environmental Science and Technology*, 2015, 12, 1461-1478. DOI: 10.1007/s13762-014-0714-9

[98] Patel PK, Pandey LM, Uppaluri RV. Cyclic adsorption and desorption characteristics of citric acid-chitosan variant resins for Pb, Fe, and Zn removal from simulated mining and agricultural wastewater system. *Journal of Polymers and the Environment*, 2024, 32, 5750-5770. DOI: 10.1007/s10924-024-03343-0

[99] Fischer K, Bipp HP. Removal of heavy metals from soil components and soils by natural chelating agents. Part II. Soil extraction by sugar acids. *Water, Air, and Soil Pollution*, 2002, 138, 271-288. DOI: 10.1023/A:1015566207849

[100] Ukhurebor KE, Hossain I, Pal K, Jokthan G, Osang F, Ebrima F, et al. Applications and contemporary issues with adsorption for water monitoring and remediation: A facile review. *Topics in Catalysis*, 2024, 67, 140-155. DOI: 10.1007/s11244-023-01817-4

[101] Al-Huqail A, Mohammed KJ, Suhatril M, Almujibah H, Toghroli S, Alnahdi SS, et al. Optimizing microalgal biomass conversion into carbon materials and their application in water treatment: A machine learning approach. *Carbon Letters*, 2025, 35, 861-880. DOI: 10.1007/s42823-024-00837-8

[102] Recepoglu YK, Arar Ö, Yüksel A. Breakthrough curve analysis of phosphorylated hazelnut shell waste in column operation for continuous harvesting of lithium from water. *Journal of Chromatography A*, 2024, 1713, 464510. DOI: 10.1016/j.chroma.2023.464510

[103] Wahab WA. Review of research progress in immobilization and chemical modification of microbial enzymes and their application. *Microbial Cell Factories*, 2025, 24, 167. DOI: 10.1186/s12934-025-02791-0

[104] Mudhoo A, Garg VK, Wang S. Removal of heavy metals by biosorption. *Environmental Chemistry Letters*, 2012, 10, 109-117. DOI: 10.1007/s10311-011-0342-2

[105] Wang L, Li G, Chen X, Yang Y, Liew RK, Abo-Dief HM, et al. Extraction strategies for lignin, cellulose, and hemicellulose to obtain valuable products from biomass. *Advanced Composites and Hybrid Materials*, 2024, 7, 219. DOI: 10.1007/s42114-024-01009-y

[106] Thi HP, Thi AT, Vu MC, Nguyen MT, Nguyen BV, Nguyen MH, et al. Photodegradation of chlorophenoxy herbicide using sustainable photocatalyst synthesized from ZnO nanoparticles supported on bio-activated carbon from robusta coffee husk. *BioNanoScience*, 2025, 15, 484. DOI: 10.1007/s12668-025-02113-z

[107] Mkilima T. Harnessing alkaline-treated agricultural residues for dual-function bioadsorbents and biopolymer precursors. *Biotechnology for Sustainable Materials*, 2025, 2, 26. DOI: 10.1186/s44316-025-00050-1

[108] Gao W, Shi Y, Zhou Y, Jia J, Chen S. Biochar with further enhanced properties prepared by acid base combined pretreatment for removal of water pollutants. *Scientific Reports*, 2025, 15, 19432. DOI: 10.1038/s41598-025-03992-8

[109] AlZahabi S, Mamdouh W. Valorization of citrus processing waste into high-performance bionanomaterials: Green synthesis, biomedicine, and environmental remediation. *RSC Advances*, 2025, 15(43), 36534-36595. DOI: 10.1039/D5RA04307G

[110] Braghieri FL, Bouafif H, Neculita CM, Koubaa A. Influence of pyro-gasification and activation conditions on the porosity of activated biochars: A literature review. *Waste and Biomass Valorization*, 2020, 11, 5079-5098. DOI: 10.1007/s12649-019-00797-5

[111] Panwar NL, Pawar A. Influence of activation conditions on the physicochemical properties of activated biochar: A review. *Biomass Conversion and Biorefinery*, 2022, 12, 925-947. DOI: 10.1007/s13399-020-00870-3

[112] Devi R, Kumar V, Kumar S, Bulla M, Jatrana A, Rani R, et al. Recent advancement in biomass-derived activated carbon for waste water treatment, energy storage, and gas purification: A review. *Journal of Materials Science*, 2023, 58, 12119-12142. DOI: 10.1007/s10853-023-08773-0

[113] Singh P, Panda HS. Biomass-derived activated carbon: A review on process parameters, material properties, and machine learning approaches for supercapacitor. *Journal of Materials Science: Materials in Electronics*, 2026, 37, 143. DOI: 10.1007/s10854-025-16551-8

[114] Zhao H, Cheng Y, Liu W, Yang L, Zhang B, Wang LP, et al. Biomass-derived porous carbon-based nanostructures for microwave absorption. *Nano-Micro Letters*, 2019, 11, 24. DOI: 10.1007/s40820-019-0255-3

[115] Hu Q, He Y, Wang F, Wu J, Ci Z, Chen L, et al. Microwave technology: A novel approach to the transformation of natural metabolites. *Chinese Medicine*, 2021, 16, 87. DOI: 10.1186/s13020-021-00500-8

[116] Jiao Z, Huyan W, Yang F, Yao J, Tan R, Chen P, et al. Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. *Nano-Micro Letters*, 2022, 14, 173. DOI: 10.1007/s40820-022-00904-7

[117] Osman AI, El-Monaem EM, Elgarahy AM, Aniagor CO, Hosny M, Farghali M, et al. Methods to prepare biosorbents and magnetic sorbents for water treatment: A review. *Environmental Chemistry Letters*, 2023, 21, 2337-2398. DOI: 10.1007/s10311-023-01603-4

[118] Pérez J, Muñoz-Dorado J, De la Rubia TD, Martínez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. *International Microbiology*, 2002, 5, 53-63. DOI: 10.1007/s10123-002-0062-3

[119] Chen CC, Dai L, Ma L, Guo RT. Enzymatic degradation of plant biomass and synthetic polymers. *Nature Reviews Chemistry*,

2020, 4, 114-126. DOI: 10.1038/s41570-020-0163-6

[120] Vinay Mohan Pathak N. Review on the current status of polymer degradation: A microbial approach. *Bioresources and Bioprocessing*, 2017, 4, 15. DOI: 10.1186/s40643-017-0145-9

[121] Singh AK, Fernandez-Lafuente R, Schmidt JE, Boczkaj G, Bilal M. Biocatalytic functionalities of lignin peroxidase-based systems in lignin depolymerization and pollutants removal from environmental matrices. *Current Pollution Reports*, 2024, 10, 345-361. DOI: 10.1007/s40726-024-00310-0

[122] Cagide C, Castro-Sowinski S. Technological and biochemical features of lignin-degrading enzymes: A brief review. *Environmental Sustainability*, 2020, 3, 371-389. DOI: 10.1007/s42398-020-00140-y

[123] Sekar V, Laxmanarao M, Sounderarajan S, Sundaram B. Unraveling the adsorption behavior of Zn (II) on UV-aged PET and PP microplastics: Kinetic and isotherm analyses. *Environmental Science and Pollution Research*, 2025, 32, 25049-25071. DOI: 10.1007/s11356-025-37100-0

[124] Chen JP, Hong L, Wu S, Wang L. Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. *Langmuir*, 2002, 18(24), 9413-9421. DOI: 10.1021/la026060v

[125] Dambies L, Guimon C, Yiacoumi S, Guibal E. Characterization of metal ion interactions with chitosan by X-ray photoelectron spectroscopy. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2001, 177(2-3), 203-214. DOI: 10.1016/S0927-7757(00)00678-6

[126] Zhang S, Zhang H, Liu F, Yang F, Zhou S, Zheng K, et al. Effective removal of Cr (vi) from aqueous solution by biochar supported manganese sulfide. *RSC Advances*, 2019, 9(54), 31333-31342. DOI: 10.1039/C9RA06028F

[127] Pathirana C, Ziyath AM, Egodawatta P, Bandara NJ, Jinadasa KB, Bandala ER, et al. Biosorption of heavy metals: Transferability between batch and column studies. *Chemosphere*, 2022, 294, 133659. DOI: 10.1016/j.chemosphere.2022.133659

[128] Lin C, Luo W, Luo T, Zhou Q, Li H, Jing L. A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism. *Journal of Cleaner Production*, 2018, 196, 626-634. DOI: 10.1016/j.jclepro.2018.05.279

[129] Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, et al. Application of advanced surface modification techniques in titanium-based implants: Latest strategies for enhanced antibacterial properties and osseointegration. *Journal of Materials Chemistry B*, 2024, 12(41), 10516-10549. DOI: 10.1039/D4TB01714E

[130] Roushree RR, Haimbodi R. Recent advances in ZnO-based nanocomposites for amoxicillin photocatalytic degradation and adsorption in wastewater: A review. *Journal of Inorganic and Organometallic Polymers and Materials*, 2025, 1-38. DOI: 10.1007/s10904-025-03943-w

[131] Dong W, Xing J, Chen Q, Huang Y, Wu M, Yi P, Pan B, Xing B. Hydrogen bonds between the oxygen-containing functional groups of biochar and organic contaminants significantly enhance sorption affinity. *Chemical Engineering Journal*, 2024, 499, 156654. DOI: 10.1016/j.cej.2024.156654

[132] Flórez E, Jimenez-Orozco C, Acelas N. Unravelling the influence of surface functional groups and surface charge on heavy metal adsorption onto carbonaceous materials: An in-depth DFT study. *Materials Today Communications*, 2024, 39, 108647. DOI: 10.1016/j.mtcomm.2024.108647

[133] Ullah S, Noman M, Ali KS, Siddique M, Sahak K, Hashmi SK, et al. Treatment of industrial wastewater (IWW) and reuse through advanced oxidation processes (AOPs): A comprehensive overview. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, 2021, 15(1), 04-14. DOI: 10.9790/2402-1501010414

[134] Ruto DS, Jang ZS, Cornejo PK, Leverenz HL, Orner KD. Toward sustainable lagoon wastewater treatment: A review of nutrient management technologies and their suitability for small communities. *ACS Environmental Science & Technology Water*, 2025, 5(11), 6200-6216. DOI: 10.1021/acsestwater.5c00757

[135] Liu T, Wang Z. Contamination and health risk assessment of heavy metals in soil surrounding an electroplating factory in JiaXing, China. *Scientific Reports*, 2024, 14, 4097. DOI: 10.1038/s41598-024-54620-w

[136] Charazińska S, Burszta-Adamiak E, Lochyński P. Recent trends in Ni (II) sorption from aqueous solutions using natural materials. *Reviews in Environmental Science and Bio/Technology*, 2022, 21, 105-138. DOI: 10.1007/s11157-021-09599-5

[137] Liu G, Dai Z, Liu X, Dahlgren RA, Xu J. Modification of agricultural wastes to improve sorption capacities for pollutant removal from water-a review. *Carbon Research*, 2022, 1, 24. DOI: 10.1007/s44246-022-00025-1

[138] Adelodun AA, Ngila JC, Kim DG, Jo YM. Isotherm, thermodynamic and kinetic studies of selective CO<sub>2</sub> adsorption on chemically modified carbon surfaces. *Aerosol and Air Quality Research*, 2016, 16, 3312-3329. DOI: 10.4209/aaqr.2016.01.0014

[139] Lison D, Van Den Brûle S, Van Maele-Fabry G. Cobalt and its compounds: Update on genotoxic and carcinogenic activities. *Critical Reviews in Toxicology*, 2018, 48(7), 522-539. DOI: 10.1080/10408444.2018.1491023

[140] Restiawaty E, Bindar Y, Syukri K, Syahroni O, Steven S, Pramudita RA, et al. Production of acid-treated-biochar and its application to remediate low concentrations of Al (III) and Ni (II) ions in the water contaminated with red mud. *Biomass Conversion and Biorefinery*, 2024, 14, 13045-13054. DOI: 10.1007/s13399-022-03338-8

[141] Granados-Correa F, Bulbulian S. Co (II) adsorption in aqueous media by a synthetic Fe-Mn binary oxide adsorbent. *Water, Air, and Soil Pollution*, 2012, 223, 4089-4100. DOI: 10.1007/s11270-012-1175-8

[142] Eniola JO, Sizirici B, Fseha Y, Shaheen JF, Abouella AM. Application of conventional and emerging low-cost adsorbents as sustainable materials for removal of contaminants from water. *Environmental Science and Pollution Research*, 2023, 30, 88245-88271. DOI: 10.1007/s11356-023-28399-8

[143] Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. *Bioengineered*, 2022, 13(3), 4923-4938. DOI: 10.1080/21655979.2022.2037273

[144] Owlad M, Aroua MK, Daud WA, Baroutian S. Removal of hexavalent chromium-contaminated water and wastewater: A Review. *Water, Air, and Soil Pollution*, 2009, 200, 59-77. DOI: 10.1007/s11270-008-9893-7

[145] Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, et al. A review of the treatment technologies for hexavalent chromium contaminated water. *Biometals*, 2023, 36, 1189-1219. DOI: 10.1007/s10534-023-00512-x

[146] Itankar N, Patil Y. Assessing physicochemical technologies for removing hexavalent chromium from contaminated waters—an overview and future research directions. *Water, Air, and Soil Pollution*, 2022, 233, 355. DOI: 10.1007/s11270-022-05745-z

[147] Younas F, Younas S, Bibi I, Farooqi ZU, Hameed MA, Mohy-Ud-Din W, et al. A critical review on the separation of heavy metal (loid)s from the contaminated water using various agricultural wastes. *International Journal of Phytoremediation*, 2024,

26(3), 349-368. DOI: 10.1080/15226514.2023.2242973

[148] Saadi R, Saadi Z, Fazaeli R, Fard NE. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. *Korean Journal of Chemical Engineering*, 2015, 32, 787-799. DOI: 10.1007/s11814-015-0053-7

[149] Aldrees A, Khan H, Alzahrani A, Dan'azumi S. Synthesis and characterization of tungsten trioxide (WO<sub>3</sub>) as photocatalyst against wastewater pollutants. *Applied Water Science*, 2023, 13, 156. DOI: 10.1007/s13201-023-01938-x

[150] Mergbi M, Galloni MG, Aboagye D, Elimian E, Su P, Ikram BM, et al. Valorization of lignocellulosic biomass into sustainable materials for adsorption and photocatalytic applications in water and air remediation. *Environmental Science and Pollution Research*, 2023, 30, 74544-74574. DOI: 10.1007/s11356-023-27484-2

[151] Hussein ON, AL-Jawad SM, Imran NJ. A study on the influence of metal Fe, Ag, and Mn doping and (Fe/Mn and Ag/Mn) dual-doping on the structural, morphological, optical, and antibacterial activity of CuS nanostructures. *Plasmonics*, 2024, 19, 1101-1120. DOI: 10.1007/s11468-023-02027-0

[152] Bumajdad A, Khan MJ, Lukaszewicz JP. Nitrogen-enriched activated carbon derived from plant biomasses: A review on reaction mechanism and applications in wastewater treatment. *Frontiers in Materials*, 2023, 10, 1218028. DOI: 10.3389/fmats.2023.1218028

[153] Iroegbu AO, Teffo ML, Sadiku ER, Meijboom R, Hlangothi SP. Advancing wastewater treatment with green and scalable metal-organic frameworks: From synthetic strategies to real-world deployment. *NPJ Clean Water*, 2025, 8, 85. DOI: 10.1038/s41545-025-00514-x

[154] Rathod S, Preetam S, Pandey C, Bera SP. Exploring synthesis and applications of green nanoparticles and the role of nanotechnology in wastewater treatment. *Biotechnology Reports*, 2024, 41, e00830. DOI: 10.1016/j.btre.2024.e00830

[155] Balasubramanian S, Kapoor A, Nakkeran E, Murugasen K, NaveenKumar R, Harini SB, et al. Review on process intensification for adsorptive wastewater treatment: focus on bed geometries. *Adsorption*, 2025, 31, 64. DOI: 10.1007/s10450-025-00622-7

[156] Ahmad WH, Chyan JB, Zakaria ZA, Ahmad WA. Sugarcane bagasse as nutrient and support material for Cr (VI)-reducing biofilm. *International Biodeterioration & Biodegradation*, 2015, 102, 3-10. DOI: 10.1016/j.ibiod.2015.03.007

[157] Chistie SM, Naik SU, Rajendra P, Apeksha, Mishra RK, Albasher G, et al. Production and characterization of magnetic Biochar derived from pyrolysis of waste areca nut husk for removal of methylene blue dye from wastewater. *Scientific Reports*, 2025, 15, 23209. DOI: 10.1038/s41598-025-03359-z

[158] Xia S, Song Z, Jeyakumar P, Bolan N, Wang H. Characteristics and applications of biochar for remediating Cr (VI)-contaminated soils and wastewater. *Environmental Geochemistry and Health*, 2020, 42, 1543-1567. DOI: 10.1007/s10653-019-00445-w

[159] Sharmila VG, Kumar MD, Tamilarasan K. Machine learning-driven advances in metal-organic framework nanomaterials for wastewater treatment: Developments and challenges. *Separation & Purification Reviews*, 2024, 1-21. DOI: 10.1080/15422119.2024.2437408

[160] Dubey P, Farooqui A, Patel A, Srivastava PK. Microbial innovations in chromium remediation: mechanistic insights and diverse applications. *World Journal of Microbiology and Biotechnology*, 2024, 40(5), 151. DOI: 10.1007/s11274-024-03936-w

[161] Nandhini J, Karthikeyan E, Rajeshkumar S. Eco-friendly bio-nanocomposites: pioneering sustainable biomedical advancements in engineering. *Discover Nano*, 2024, 19, 86. DOI: 10.1186/s11671-024-04007-7

[162] Sudarsan JS, Goel M, Jahangiri H, Rout PR, Tavakolian M, Briggs C, et al. Sustainable food waste management: A critical review on biochar production and applications. *Sustainable Food Technology*, 2025, DOI: 10.1039/D5FB00087D

[163] Hjiri M, Mustapha N. Sol-gel derived ZnO nanoparticles doped with transition and alkaline-earth metals: A comprehensive review on dielectric and electrical properties. *Journal of Sol-Gel Science and Technology*, 2025, 116, 1167-1187. DOI: 10.1007/s10971-025-06903-5

[164] Osman AI, Fang B, Zhang Y, Liu Y, Yu J, Farghali M, et al. Life cycle assessment and techno-economic analysis of sustainable bioenergy production: A review. *Environmental Chemistry Letters*, 2024, 22, 1115-1154. DOI: 10.1007/s10311-023-01694-z

[165] Balakumar S, Mahesh N, Kamaraj M, Aravind J. Harnessing artificial intelligence for sustainable environmental remediation a review. *International Journal of Environmental Science and Technology*, 2025, 22, 13189-13206. DOI: 10.1007/s13762-025-06528-9

[166] Zhang W, Tooker NB, Mueller AV. Enabling wastewater treatment process automation: Leveraging innovations in real-time sensing, data analysis, and online controls. *Environmental Science: Water Research & Technology*, 2020, 6(11), 2973-2992. DOI: 10.1039/D0EW00394H

[167] Dai W, Pang JW, Ding J, Wang JH, Xu C, Zhang LY, et al. Integrated real-time intelligent control for wastewater treatment plants: Data-driven modeling for enhanced prediction and regulatory strategies. *Water Research*, 2025, 274, 123099. DOI: 10.1016/j.watres.2025.123099

[168] Alprol AE, Mansour AT, Ibrahim ME, Ashour M. Artificial intelligence technologies revolutionizing wastewater treatment: Current trends and future prospective. *Water*, 2024, 16(2), 314. DOI: 10.3390/w16020314