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Abstract

Heavy metals (HMs) pollution of water is a severe global challenge. This review uniquely synthesizes recent advances
in using processed agricultural and industrial biomass wastes as low-cost, eco-friendly adsorbents specifically targeting
nickel, cobalt, and chromium removal. We systematically analyze how simple chemical and physical treatments
significantly enhance metal-binding capacities, often achieving near-complete removal in laboratory settings.
Furthermore, emerging bio-nanocomposites combining biomass with metal oxides demonstrate superior multifunctional
performance. Crucially, this work integrates detailed discussions on adsorption mechanisms, isotherms, kinetics,
thermodynamics, and regeneration strategies through comprehensive tables and schematic diagrams, offering a holistic
framework that has not been previously compiled. Despite promising lab-scale results, translating these materials to
real-world water treatment faces major challenges including scalable production, complex wastewater interactions, and
adsorbent recovery. Addressing these requires interdisciplinary research focused on scalable engineering, cost-effective
regeneration, and full environmental impact assessments. By bridging fundamental biosorption science with practical
application barriers, this review provides timely, impactful insights to guide future research and promote sustainable
water remediation technologies.
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1. Introduction

1.1 Background

Water pollution by heavy metals (HMs) such as Nickel (Ni), Cobalt (Co), and Chromium (Cr) has become a pervasive
environmental concern globally [1-3]. These HMs, originating from diverse anthropogenic activities including mining,
electroplating, textile manufacturing, and chemical industries, are highly toxic, non-biodegradable, and tend to
accumulate in living organisms [4]. Their presence in water bodies threatens aquatic ecosystems, contaminates drinking
water sources, and poses severe health risks to humans, such as carcinogenicity, organ damage, and neurological
disorders [5,6]. Addressing the contamination caused by HMs is therefore critical to protecting both environmental and
public health [7-9].

Traditional methods for HMs removal, including chemical precipitation, ion exchange, membrane filtration, and reverse
osmosis, have been widely applied (Figure 1). However, these approaches often suffer from limitations such as high
operational costs, production of secondary sludge, incomplete removal, and lack of selectivity toward specific metals
[10,11]. Additionally, many conventional technologies require sophisticated infrastructure and intensive energy inputs,
making them less feasible for large-scale or resource-constrained settings [12,13]. Consequently, there is an urgent need
for cost-effective, sustainable, and environmentally benign remediation technologies capable of efficiently removing
HMs from wastewater [14-17].

Chemical
Precipitation

Heavy
Metal o
Removal

Heavy Metal ;ﬂ:mbr?ne Coagulation Purified
Water i Water

Reverse
Osmosis

Figure 1. Schematic representation of key technologies employed for HMs removal from wastewater.

Biosorption, defined as the use of biological materials to adsorb and concentrate HMs from water, has gained attention
as a sustainable and eco-friendly alternative. Biomass-derived biosorbents such as fruit peels, plant residues, and aquatic
weeds are abundant, renewable, and biodegradable, containing functional groups (carboxyl (-COOH), hydroxyl (-OH),
amino (-NH:)) that facilitate metal binding via ion exchange and complexation [18-20]. Their low cost and high
adsorption capacity make them especially suitable for wastewater treatment in developing regions [21-23].

Recent advances in biomass modification chemical (acid/base), physical (thermal), and biological (enzymatic)
treatments have enhanced surface area, porosity, and active binding sites, improving adsorption efficiency and
selectivity [24-29]. Emerging hybrid materials combining biomass with nanostructures like tungsten oxide further
enhance heavy metal removal and photocatalytic degradation [30].

While many reviews cover biomass-derived adsorbents for heavy metal removal, this manuscript offers a focused,
up-to-date synthesis on nickel, cobalt, and chromium biosorption. It integrates various biomass modification strategies
with mechanistic insights and compiles comprehensive tables on adsorption capacities, isotherm and kinetic models,
thermodynamics, and regeneration, alongside diagrams linking modifications to mechanisms. Additionally, the review
tackles key challenges like scalability, performance in complex multi-metal wastewaters, and the role of emerging tools
such as artificial intelligence (AI) and life cycle assessment (LCA). By connecting fundamental science with practical
applications, this work fills critical gaps and serves as a valuable resource for advancing sustainable heavy metal
remediation.

This review analyzes biosorption mechanisms, evaluates the effects of biomass modification on adsorption performance,
and reviews recent applications targeting Ni (II), Co (II), and Cr (VI) removal. We also discuss challenges in scaling up,
managing multi-metal contaminated wastewater, and integrating biosorption with microbial remediation. Finally, future
research directions, including Al for adsorbent design and LCA for sustainability, are explored to advance biosorption
as a viable pathway for heavy metal remediation in water treatment.

1.2 Regulatory Standards for HMs in Drinking Water
HMs in water threaten health and ecosystems worldwide [31-38]. The World Health Organization (WHO) sets

maximum allowable limits in drinking water to prevent adverse effects, from acute poisoning to chronic diseases such
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as cancer and organ damage [38-47]. Table 1 summarizes these guideline values for key metals like Ni, Co, and Cr. For
example, Ni is limited to 0.07 mg/L due to skin and respiratory risks [48]; highly toxic hexavalent chromium (Cr VI) is
restricted to 0.05 mg/L because of carcinogenicity and organ toxicity [49]. Co limits are less defined but often set
around 0.05 mg/L as a precaution [50]. These standards provide benchmarks for biosorption effectiveness, requiring
treated effluents to meet safety thresholds [51]. Hence, biosorbent development must focus on achieving regulatory
compliance alongside maximizing removal efficiency, especially in regions with industrial pollution and water scarcity
[52].

Table 1. WHO guidelines for maximum allowable concentrations of selected HMs in drinking water and associated health effects.

HMs Chemical Form WHO Maximum Limit (mg/L) Health Effects

Nickle (Ni) Nzt 0.07 Squ allergies, respiratory problems, potential
carcinogen

Cobalt (Co) Co** 0.05" Possible carcinogenic effects; limited data

Carcinogenic, respiratory issues, kidney and

Chromium (Cr) Cr (VI) (Hexavalent)  0.05 liver damage

Lead (Pb) Pb* 0.01 Neurotoxicity, especially in children
Cadmium (Cd) Cd** 0.003 Kidney damage, bone demineralization
Mercury (Hg) Hg* 0.006 Neurological and kidney damage

Note: * The guideline value for cobalt is provisional due to limitations in the available toxicological data.
2. Methodology

2.1 Literature Search and Selection Protocol

A systematic search strategy was implemented to identify, select, and synthesize the relevant scientific literature on the
biosorption of Ni (II), Co (II), and Cr (VI) using biomass-derived adsorbents. The methodology was designed to ensure
comprehensiveness, reproducibility, and transparency, aligning with best practices for evidence synthesis.

2.1.1 Information Sources and Search Strategy

Electronic searches were conducted in two core citation databases, Scopus and Web of Science (Core Collection), on
December 2024. To minimize publication bias and locate additional relevant literature, including preprints and theses, a
supplementary search was performed in Google Scholar. The search timeframe was limited to publications from January
2000 to December 2024 to focus on contemporary research while capturing foundational studies.

2.1.2 Eligibility Criteria and Study Selection

Retrieved records from all sources were combined, and duplicates were removed using a reference management
software (EndNote, Clarivate Analytics). The subsequent screening involved two sequential stages:

(1) Title/abstract screening. Two independent reviewers screened titles and abstracts against initial inclusion criteria: (a)
focus on the aqueous-phase adsorption of Ni (II), Co (II), or Cr (VI); (b) use of a primary adsorbent material derived
from biomass or organic waste; (c) presentation of original experimental data.

(2) Full-text assessment. The full texts of potentially eligible studies were retrieved and subjected to a detailed appraisal
based on predefined criteria. Studies were excluded if they: (a) utilized exclusively synthetic or inorganic adsorbents
(e.g., engineered nanomaterials, zeolites) without a biomass component; (b) lacked essential quantitative performance
data (e.g., adsorption capacity, removal percentage, fitted model parameters); (c) were non-primary literature (e.g.,
review articles, editorials, book chapters); or (d) were not available in English. Conflicts between reviewers were
resolved through discussion or consultation with a third author.

2.1.3 Data Extraction and Synthesis

Data from the final set of included studies were extracted into a structured Microsoft Excel® spreadsheet. Extracted
variables encompassed: (a) Adsorbent properties: Biomass source, type, and modification method; (b) Experimental
conditions: Target metal, initial concentration, solution pH, temperature, adsorbent dose; (c) Mechanistic insights:
Dominant adsorption mechanism(s) proposed; (d) Practical considerations: Data on adsorbent regeneration, reusability,
and application in real or synthetic multi-metal wastewater. This structured dataset formed the basis for the comparative
analysis and narrative synthesis presented in this review.

2.2 Screening and Selection Criteria

An initial search identified over 250 articles. After removing duplicates and non-peer-reviewed sources, 225 articles
remained for screening. Inclusion criteria were: studies on biosorption of HMs (Ni, Co, Cr) using biomass-derived
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materials; investigations on chemical, physical, or biological biomass modifications to enhance adsorption; reports
providing quantitative data on adsorption capacity, removal efficiency, isotherms, and kinetics; studies addressing
biosorbent regeneration, reusability, and scalability; and English-language full-text articles. Excluded were studies
focusing solely on synthetic or inorganic adsorbents, lacking experimental validation or sufficient data, opinion pieces,
reviews without original data, and non-English publications. Following screening, 168 articles were selected for
full-text review.

2.3 Data Extraction and Analysis

Data from selected studies were systematically extracted, covering biomass types and origins, modification methods,
target HMs and concentrations, adsorption performance (capacity, efficiency, rates), kinetic and isotherm models,
regeneration potential, and experimental setups. Challenges like multi-metal interference and scalability were noted.
This information was compiled into tables and figures to highlight trends and identify research gaps and emerging
technologies.

2.4 Quality Assessment

To ensure the reliability and validity of the findings summarized in this review, each included study underwent a quality
appraisal based on: The clarity and reproducibility of experimental methods. Adequacy of controls and replicates.
Statistical treatment of data, including error analysis and model fitting quality (e.g., R? values). Relevance and practical
applicability of biosorption results, particularly in real wastewater scenarios. Preference was given to studies published
in high-impact journals, with recent publications prioritized to reflect current scientific understanding and technological
advances.

3. Key Technologies Employed for HMs Removal from Wastewater

HMs in wastewater can be treated using physical, chemical, and biological methods, each with distinct advantages and
limitations (Figure 2). Chemical precipitation, one of the most common methods, involves adding reagents like lime or
sulfides to convert dissolved metals into insoluble forms for removal by sedimentation or filtration [53]. While
cost-effective, it generates large volumes of metal-laden sludge requiring careful disposal [54]. Adsorption techniques
using materials such as activated carbon, biochar, and nanomaterials offer high removal efficiencies, particularly at low
metal concentrations, and allow adsorbent regeneration for improved sustainability [55]. Ion exchange provides
selective metal removal via reversible ion substitution but can be hindered by competing ions and requires pretreatment
for complex wastewaters [56].
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Figure 2. Dominant biosorption mechanisms: ion exchange, surface complexation, electrostatic attraction, micro- precipitation, and
physical adsorption on biomass- derived adsorbents.

Advanced physical and biological treatments also contribute. Membrane filtration methods like reverse osmosis and
nanofiltration effectively separate metals by size and charge but are energy-intensive and prone to fouling [57].
Electrochemical processes, such as electrocoagulation, destabilize metals using electric current, minimizing chemical
use but requiring precise control and maintenance [58]. Biological methods, including phytoremediation and microbial
bioremediation, use plants and microorganisms to uptake or transform metals, offering eco-friendly options suitable for
low to moderate contamination with slower treatment times [59]. Among these, biosorption is a complex process
involving multiple physicochemical mechanismsion exchange, complexation, electrostatic attraction, microprecipitation,
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and physical adsorption that work synergistically to bind metals to biomass surfaces [60]. Functional groups such as
-COOH, -OH, -NHz, and phosphate (-PO4*") serve as active sites for metal binding [61].

Ion exchange, often dominant under optimized pH and temperature, replaces native cations on the biosorbent with metal
ions, influenced by ionic radius, charge, and hydration energy [62]. Complexation forms stable coordination bonds
between metal ions and electron-donating groups, creating strong metal-ligand complexes [63-65]. Electrostatic
attraction enhances binding when the biosorbent surface is negatively charged, which depends on solution pH affecting
functional group ionization [66-70]. Microprecipitation forms insoluble metal precipitates on or within the biosorbent,
improving removal but potentially limiting regeneration [71-75]. Physical adsorption provides reversible, weak initial
attachment via van der Waals forces, facilitating subsequent stronger chemical binding [76-77]. The overall biosorption
efficiency depends on biomass composition, surface area, porosity, and environmental factors such as pH, temperature,
and ionic strength [78-80]. Understanding these mechanisms is essential for tailoring biosorbents through chemical or
physical modification to enhance capacity and selectivity [81].

In addition to surface interaction mechanisms, adsorption performance is strongly governed by kinetic behavior,
equilibrium modeling, thermodynamic feasibility, and regeneration stability as shown in (Table 2), which collectively
determine the practical applicability of biosorbents in wastewater treatment systems [82-85]. Most biomass-derived
adsorbents follow pseudo-second-order kinetic models, indicating that chemisorption involving electron sharing or
exchange between metal ions and surface functional groups governs the rate-limiting step [86-88]. Equilibrium
adsorption data are frequently best described by the Langmuir isotherm model, suggesting monolayer adsorption on
homogeneous active sites, whereas Freundlich and Temkin models reflect heterogeneous surface interactions and
adsorbate-adsorbent energy distributions under certain operating conditions [89,90].

Table 2. Biomass-derived adsorbents, modification methods, adsorption models, thermodynamic behavior, and regeneration
performance for heavy metal removal.

. . . Max o Regeneration
Biomass Modification  Target . Kinetics Isotherm . o
Source Method HMs Capacity Model Model Thermodynamics (Cycles_/ %o Ref.
(mg/g) Retention)
. Pseudo-2n . AG <0, 5
Lemon peel NaOH treated Ni(Il)  36.7 d order Langmuir endothermic cycles/~90% [9]
Sugarcane H;PO4 + Pseudo-2n  Langmuir, o
bagasse thermal Cr (V) 982 d order Temkin AG<0,AH>0 6 cycles/88%  [7]
Mango leaf . Pseudo-2n . o
powder Unmodified Cr (VD) 99.1 d order Langmuir  Spontaneous 4 cycles/82% [23]
Mustard Acid Pseudo-2n . . o
biochar activated Co(I) 95 d order Langmuir  Endothermic Scycles/85%  [21]
Rice husk Steam Pb (ID), Pseudo-2n  Freundlic N
biochar activated Cd (I1) 10 d order h AG<0 7 eycles/90% - [27]
Polypyrrole/ Polymer_ Cr(VI) 251 Pseudo-2n Langmuir  Endothermic 5 cycles/87% [2]
bagasse composite d order
Banana peel . Pseudo-2n  Freundlic o
carbon Pyrolysis Co(Ill) 72 d order h Spontaneous 4 cycles/80%  [25]
Blochar.-W03 Metg Loxide Cr (V) >100 Mixed Langmuir  Endothermic Magnetic [36]
composite doping recovery

Thermodynamic parameters further explain adsorption behavior, where negative Gibbs free energy (AG) values confirm
the spontaneous nature of metal uptake, and positive enthalpy (AH) values indicate endothermic adsorption in many
biosorbent systems, implying improved performance at elevated temperatures [91-93]. Positive entropy (AS) values
suggest increased randomness at the solid-solution interface during adsorption [94]. Regeneration and reuse are critical
for assessing economic feasibility and environmental sustainability [95]. Desorption using dilute acids, alkalis, or
chelating agents commonly restores 70-95% of adsorption capacity over multiple cycles; however, repeated
regeneration may gradually reduce performance due to structural degradation or irreversible metal binding [96-100].
Therefore, comprehensive evaluation of adsorption modeling and regeneration behavior is essential for scaling
biosorption technologies from laboratory investigations to real-world wastewater treatment applications [101-103].

4. Impact of Biomass Modification on Biosorption Performance
The biosorption capacity of raw biomass can be greatly enhanced through various modification techniques that improve

their physical and chemical properties (Figure 2). These modifications including chemical (acidic or alkaline), physical
(thermal, microwave), and biological (enzymatic) treatments increase surface area, porosity, and the density and
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accessibility of functional groups responsible for HMs binding, resulting in improved adsorption performance suitable
for practical wastewater treatment [104,105].

Raw Biomass

4
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Figure 3. Schematic illustration of major modification strategies applied to biomass-derived adsorbents, including chemical, physical,
biological, and bio-nanocomposite approaches.

4.1 Chemical Modification

Chemical treatments are widely used to enhance biosorption by altering surface functional groups and increasing
porosity (Figure2) [106,107]. Acid treatments with mineral acids (e.g., HNO3, H3PO4) hydrolyze hemicellulose and
lignin, removing impurities and exposing carboxyl, hydroxyl, and phosphate groups, which improves metal binding via
electrostatic attraction and complexation [108,109]. Alkaline treatments (NaOH, KOH) swell the biomass matrix and
deprotonate acidic groups, generating more negatively charged sites for cation adsorption [110-112]. For example,
NaOH-treated lemon peel showed a 2.5-fold increase in Ni (II) adsorption capacity, highlighting the effectiveness of
chemical modification [113].

4.2 Physical Modification

Physical methods like thermal activation, microwave irradiation, pyrolysis, and steam activation enhance biomass
structure by increasing surface area and pore volume [114,115]. Thermal activation decomposes biomass components,
creating a porous, carbon-rich matrix that improves diffusion and adsorption [116,117]. Microwave treatment offers
rapid, uniform heating to develop pore networks efficiently [118-120]. Combined chemical-physical modifications,
such as phosphoric acid-assisted thermal activation of sugarcane bagasse, synergistically increase adsorption capacity
(e.g., Cr (VI) uptake up to 98.15 mg/g) [121]. These physical methods make biosorbents more effective and scalable for
industrial use [122].

4.3 Biological Modification

Biological or enzymatic treatments use specific enzymes or microbes to selectively degrade lignin, hemicellulose, and
other polymers, increasing surface accessibility and exposing functional groups without harsh chemicals or high
temperatures [123-125]. Enzymes like cellulases and lignin-degrading oxidases improve surface roughness and active
site availability, while fungi and bacteria can further enhance porosity and introduce new binding sites [126,127].
Though slower and more sensitive to conditions than chemical methods, biological modifications offer eco-friendly
alternatives with high selectivity.

4.4 Quantitative Correlations and Mechanistic Insights

Studies reveal strong correlations (R? > 0.95) between the density of functional groups especially carboxyl groups and
metal adsorption capacity, indicating surface chemistry plays a more critical role than surface area alone [128]. Metals
bind primarily through deprotonated carboxyl groups forming coordination bonds and ion-exchange interactions, as
confirmed by spectroscopic analyses (fourier transform infrared spectroscopy (FTIR), X-ray Photoelectron
spectroscopy (XPS), nuclear magnetic resonance (NMR)) [129,130]. These insights underscore the importance of
targeted functional group engineering to systematically enhance biosorption efficiency.

https://iees.cultechpub.com/iees IEES, Vol. 2, No. 1, January 2026



Kamal et al. 7

4.5 Enhanced Performance in Continuous-Flow Systems

Testing biosorbents in continuous-flow setups (e.g., fixed-bed columns) simulates real wastewater conditions better
than batch tests, revealing improved stability, regeneration, and mass transfer kinetics [131]. For example, chemically
modified rice husks maintained ~90% Cr (VI) removal efficiency after 10 adsorption-desorption cycles, demonstrating
durability and practical viability [132]. Such performance is crucial for reducing costs and waste in industrial
applications.

4.6 Synergistic Modifications and Future Directions

Combining multiple modification techniques (chemical, physical, biological) often yields synergistic improvements in
surface properties and adsorption capacity [133]. Incorporating nanomaterials like metal oxides (tungsten oxide (WO3))
into biomass matrices creates multifunctional bio-nanocomposites with enhanced adsorption, photocatalytic reduction,
and easy magnetic recovery [134]. Future research should focus on optimizing modification methods for
cost-effectiveness, long-term stability, scalability, integration with microbial remediation, and environmental
sustainability through LCA to advance real-world applications.

Recent studies emphasize that adsorption efficiency is not governed by surface area alone, but strongly correlates with
the density and accessibility of oxygen- and nitrogen-containing functional groups [135]. Spectroscopic evidence from
FTIR and XPS confirms that deprotonated carboxyl and amino groups dominate metal binding through coordination
and ion-exchange mechanisms [136]. Therefore, rational functional group engineering, rather than excessive thermal
activation, is increasingly recognized as the most energy-efficient pathway for enhancing biosorption capacity [137].
This insight supports the design of targeted low-temperature modification techniques suitable for decentralized and
resource-limited wastewater treatment applications [138].

5. Application of Biomass-Derived Adsorbents for HMs Removal

Biomass-derived adsorbents have gained widespread attention as sustainable, low-cost solutions for removing HMs
from contaminated water. Their abundance, biodegradability, and diverse functional groups enable efficient binding of
toxic metals like Ni, Co, and Cr. Additionally, hybrid materials such as WO nanostructures combined with biomass
show promising multifunctional remediation properties.

5.1 Nickel

Nickel pollution arises mainly from electroplating, mining, and battery industries, posing serious health risks including
carcinogenic and respiratory effects [139]. Biosorption using agricultural waste such as lemon peels, rice husks, and
banana peels has shown Ni (II) removal efficiencies often exceeding 90%, sometimes approaching complete removal
[140]. Chemical modifications, particularly alkaline treatments with NaOH, significantly boost adsorption capacity by
increasing the ionization of functional groups like carboxyl and hydroxyl, enhancing electrostatic attraction and
complexation [141]. Adsorption kinetics typically follow a pseudo-second-order model, indicating chemical bonding
governs the process, while Langmuir isotherms suggest monolayer adsorption on uniform sites [142]. These
characteristics support the practical use of biomass adsorbents for scalable Ni (I[) wastewater treatment.

5.2 Cobalt

Cobalt, extensively used in batteries and alloys, can cause cardiotoxicity and genotoxicity when present in excess [143].
Biochar from mustard stalks, algae, and coconut shells effectively removes Co (II), especially after acid activation (e.g.,
with HNO3), which enhances surface acidity and functional group exposure. Marine macroalgae and aquatic plants like
water hyacinth also provide abundant sulfate, carboxyl, and amino groups that bind Co?' via electrostatic and
ion-exchange mechanisms [144]. Co (II) adsorption commonly follows pseudo-second-order kinetics and fits Langmuir
isotherms, reflecting chemisorption on homogeneous surfaces [145]. These biosorbents offer a renewable, low-cost
option for Co remediation in industrial effluents [146].

5.3 Chromium

Hexavalent chromium Cr (VI) is highly toxic and carcinogenic, requiring efficient removal methods [147-150].
Agricultural wastes such as mango leaves, orange peels, and sugarcane bagasse exhibit high Cr (VI) adsorption
efficiencies; mango leaf powder achieves up to 99.13% removal [151]. Modified composites, like polypyrrole-coated
sugarcane bagasse, show enhanced capacities (up to 251 mg/g) due to nitrogenous groups facilitating electrostatic and
redox interactions [152]. Adsorption fits Langmuir and Temkin isotherms, indicating monolayer coverage and
adsorbate-adsorbent interaction effects [153]. Kinetics typically follow a pseudo-second-order model, driven by
chemical adsorption coupled with reduction of Cr (VI) to less toxic Cr (III), improving detoxification. These
biomass-based adsorbents hold great promise for large-scale Cr (VI) treatment [154].
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5.4 Emerging Materials: Tungsten Oxide Nanostructures

While pure biomass adsorbents are effective, their integration with functional nanomaterials can create superior hybrid
systems. WO3 nanostructures, known for their visible-light photocatalysis and high surface area, are particularly
promising for creating advanced bio-nano composites. When combined with biomass substrates (e.g., biochar,
cellulose), these composites leverage the high adsorption capacity of the biomass with the photocatalytic activity of
WO3, enabling not just adsorption but also the reduction and detoxification of metals like Cr (VI) [155]. Doping with
metals (Fe, Ag, Cu) can further enhance functionality, such as adding magnetic recoverability. These hybrids represent a
strategic evolution of biomass-derived adsorbents, moving beyond passive adsorption to active, multi-functional
remediation [156]. However, challenges in scalable synthesis of the hybrids, nanoparticle stability, and real wastewater
performance must be addressed to translate these promising lab-scale materials into practical applications [157-160].

6. Challenges and Future Directions

Despite the promising advances in biomass-derived biosorbents for HMs remediation, several critical challenges remain
that hinder the transition from laboratory research to large-scale, practical applications. Addressing these challenges
requires multidisciplinary approaches that combine material science, microbiology, environmental engineering, and
computational modeling. Below, key challenges and prospective future directions are discussed in detail.

6.1 Scalability and Regeneration

Scaling up biosorption from lab batch studies to continuous-flow industrial systems faces operational hurdles like
clogging, pressure drops, and uneven flow, which reduce biosorbent lifespan and raise maintenance costs. For example,
sugarcane bagasse in pilot bioreactors showed 90% Cr (VI) removal but suffered clogging after 15 cycles [161].
Modular bioreactor designs can help mitigate these issues by facilitating maintenance and adapting to variable
wastewater volumes. Regeneration and reuse remain critical for economic viability; chemically modified biosorbents
(e.g., NaOH-treated lemon peels) have demonstrated around 90% capacity retention over multiple cycles under ideal
conditions [162]. However, their long-term performance in real wastewater with fluctuating contaminant loads is
understudied. Future research should develop environmentally friendly, cost-effective regeneration techniques such as
mild chemical or electrochemical methods and integrate biosorption with metal recovery to enhance sustainability.

6.2 Multi-Metal Systems and Real Wastewater Complexity

Most studies focus on single-metal removal in controlled settings, while actual wastewaters contain complex mixtures
of metals and organics that compete for adsorption sites, often lowering efficiency. For example, Ni (II) uptake can drop
by about 20% when Cr (VI) coexists due to site competition [163]. Natural organic matter, pH variability, and ionic
strength further complicate performance. To tackle these challenges, Al and machine learning (ML) models have
recently shown promise in predicting competitive adsorption with up to 95% accuracy, guiding selective biosorbent
design tailored to complex wastewater [163]. Nonetheless, extensive real wastewater testing and field trials are essential
to validate these models and ensure robust performance under dynamic conditions.

6.3 Integration with Microbial Bioremediation

Combining biosorption with microbial bioremediation offers synergistic benefits by coupling metal adsorption with
microbial transformation or reduction. For instance, rice husk biochar paired with Methylococcus capsulatus achieved
up to 95% Cr (VI) detoxification by reducing it to less toxic Cr (III). Developing multifunctional bio-nanocomposites
that integrate microbes with modified biomass could harness combined mechanisms of adsorption, enzymatic reduction,
and photocatalysis. Optimizing interactions such as biofilm formation and metal bioavailability will be key to
advancing these hybrid systems [164].

6.4 Life Cycle Assessment

Though biosorption is generally eco-friendly, comprehensive LCAs are vital to quantify its overall environmental
footprint across production, use, and disposal stages. A 2024 LCA revealed rice husk biochar emits about 50% less CO2
compared to activated carbon, highlighting its sustainability advantage [165]. However, data are scarce on
energy-intensive modifications like nanoparticle doping or thermal activation [165]. Balancing performance gains with
environmental impacts requires thorough LCA and techno-economic assessments to guide sustainable biosorbent
development and inform policies aligned with climate goals.

6.5 AI and Computational Modeling

Al and ML have emerged as promising tools to enhance biosorbent design and optimize treatment processes. Recent
studies have demonstrated practical applications of ML models that accurately predict adsorption capacities—for
example, achieving up to 95% accuracy in estimating Ni (II) uptake based on parameters such as pH, surface area, and
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functional group density [166]. These models move beyond conceptual discussions by providing actionable insights for
tailoring biosorbent properties and guiding experimental design [167].

Furthermore, integration of Al with real-time monitoring systems in wastewater treatment facilities shows potential to
dynamically adjust operational parameters like flow rate, pH, and regeneration cycles, improving treatment efficiency
and reducing operational costs [168]. However, challenges remain in developing hybrid modeling frameworks that
effectively combine mechanistic understanding with data-driven approaches. To address this, ongoing research is
increasingly focused on interdisciplinary collaborations that merge material science, environmental engineering, and
computational expertise. Such efforts aim to transition Al-enhanced biosorption technologies from theoretical concepts
toward scalable, real-world applications. Future work should also prioritize validating Al models under diverse,
complex wastewater conditions to ensure practical robustness and reliability.

7. Conclusion

Biomass-derived biosorbents represent a practical, sustainable, and low-cost solution for the treatment of
HM-contaminated wastewater, particularly in regions with abundant agricultural and industrial biomass residues. Their
strong metal-binding capability, environmental compatibility, and potential for local production position them as viable
alternatives to conventional treatment technologies. While laboratory-scale studies clearly demonstrate their
effectiveness, wider adoption requires addressing key challenges related to scalability, performance in real wastewater
systems, and long-term operational stability. Future efforts should prioritize the development of simple, locally
adaptable modification methods, validation under field conditions, and integration into existing decentralized treatment
infrastructures. With targeted research, policy support, and pilot-scale implementation, biomass-based biosorption
technologies can play a meaningful role in advancing sustainable water management and protecting public and
environmental health.
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